Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(135)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: New England Journal of Medicine
August/24/2011
Abstract
BACKGROUND
Generalized pustular psoriasis is a life-threatening disease of unknown cause. It is characterized by sudden, repeated episodes of high-grade fever, generalized rash, and disseminated pustules, with hyperleukocytosis and elevated serum levels of C-reactive protein, which may be associated with plaque-type psoriasis.
METHODS
We performed homozygosity mapping and direct sequencing in nine Tunisian multiplex families with autosomal recessive generalized pustular psoriasis. We assessed the effect of mutations on protein expression and conformation, stability, and function.
RESULTS
We identified significant linkage to an interval of 1.2 megabases on chromosome 2q13-q14.1 and a homozygous missense mutation in IL36RN, encoding an interleukin-36-receptor antagonist (interleukin-36Ra), an antiinflammatory cytokine. This mutation predicts the substitution of a proline residue for leucine at amino acid position 27 (L27P). Homology-based structural modeling of human interleukin-36Ra suggests that the proline at position 27 affects both the stability of interleukin-36Ra and its interaction with its receptor, interleukin-1 receptor-like 2 (interleukin-1 receptor-related protein 2). Biochemical analyses showed that the L27P variant was poorly expressed and less potent than the nonvariant interleukin-36Ra in inhibiting a cytokine-induced response in an interleukin-8 reporter assay, leading to enhanced production of inflammatory cytokines (interleukin-8 in particular) by keratinocytes from the patients.
CONCLUSIONS
Aberrant interleukin-36Ra structure and function lead to unregulated secretion of inflammatory cytokines and generalized pustular psoriasis. (Funded by Agence Nationale de la Recherche and Société Française de Dermatologie.).
Publication
Journal: Journal of Clinical Investigation
January/14/2013
Abstract
Psoriasis is a chronic inflammatory disorder of the skin affecting approximately 2% of the world's population. Accumulating evidence has revealed that the IL-23/IL-17/IL-22 pathway is key for development of skin immunopathology. However, the role of keratinocytes and their crosstalk with immune cells at the onset of disease remains poorly understood. Here, we show that IL-36R-deficient (Il36r-/-) mice were protected from imiquimod-induced expansion of dermal IL-17-producing γδ T cells and psoriasiform dermatitis. Furthermore, IL-36R antagonist-deficient (Il36rn-/-) mice showed exacerbated pathology. TLR7 ligation on DCs induced IL-36-mediated crosstalk with keratinocytes and dermal mesenchymal cells that was crucial for control of the pathological IL-23/IL-17/IL-22 axis and disease development. Notably, mice lacking IL-23, IL-17, or IL-22 were less well protected from disease compared with Il36r-/- mice, indicating an additional distinct activity of IL-36 beyond induction of the pathological IL-23 axis. Moreover, while the absence of IL-1R1 prevented neutrophil infiltration, it did not protect from acanthosis and hyperkeratosis, demonstrating that neutrophils are dispensable for disease manifestation. These results highlight a central and unique IL-1-independent role for IL-36 in control of the IL-23/IL-17/IL-22 pathway and development of psoriasiform dermatitis.
Publication
Journal: American Journal of Human Genetics
November/21/2011
Abstract
Generalized pustular psoriasis (GPP) is a rare and yet potentially lethal clinical variant of psoriasis, characterized by the formation of sterile cutaneous pustules, neutrophilia, fever and features of systemic inflammation. We sequenced the exomes of five unrelated individuals diagnosed with GPP. Nonsynonymous, splice-site, insertion, and deletion variants with an estimated population frequency of <0.01 were considered as candidate pathogenic mutations. A homozygous c.338C>T (p.Ser113Leu) missense substitution of IL36RN was identified in two individuals, with a third subject found to be a compound heterozygote for c.338C>T (p.Ser113Leu) and a c.142C>T (p.Arg48Trp) missense substitution. IL36RN (previously known as IL1F5) encodes an IL-1 family receptor antagonist, which opposes the activity of the IL-36A and IL-36G innate cytokines. Homology searches revealed that GPP mutations alter evolutionarily conserved residues. Homozygosity for the c.338C>T (p.Ser113Leu) variant is associated with an elevated proinflammatory response following ex vivo stimulation with IL36A. These findings suggest loss of function of IL36RN as the genetic basis of GPP and implicate innate immune dysregulation in this severe episodic inflammatory disease, thereby highlighting IL-1 signaling as a potential target for therapeutic intervention.
Publication
Journal: Journal of Autoimmunity
August/18/2016
Abstract
Psoriasis vulgaris is a common, chronic inflammatory skin disease with a complex etiology involving genetic risk factors and environmental triggers. Here we describe the many known genetic predispositions of psoriasis with respect to immune genes and their encoded pathways in psoriasis susceptibility. These genes span an array of functions that involve antigen presentation (HLA-Cw6, ERAP1, ERAP2, MICA), the IL-23 axis (IL12Bp40, IL23Ap19, IL23R, JAK2, TYK2), T-cell development and T-cells polarization (RUNX1, RUNX3, STAT3, TAGAP, IL4, IL13), innate immunity (CARD14, c-REL, TRAF3IP2, DDX58, IFIH1), and negative regulators of immune responses (TNIP1, TNFAIP3, NFKBIA, ZC3H12C, IL36RN, SOCS1). The contribution of some of these gene products to psoriatic disease has also been revealed in recent years through targeting of key immune components, such as the Th17/IL-23 axis which has been highly successful in disease treatment. However, many of the genetic findings involve immune genes with less clear roles in psoriasis pathogenesis. This is particularly the case for those genes involved in innate immunity and negative regulation of immune specific pathways. It is possible that risk alleles of these genes decrease the threshold for the initial activation of the innate immune response. This could then lead to the onslaught of the pathogenic adaptive immune response known to be active in psoriatic skin. However, precisely how these various genes affect immunobiology need to be determined and some are speculated upon in this review. These novel genetic findings also open opportunities to explore novel therapeutic targets and potentially the development of personalized medicine, as well as discover new biology of human skin disease.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: The Journal of investigative dermatology
July/8/2013
Publication
Journal: The Journal of investigative dermatology
December/22/2013
Abstract
Generalized pustular psoriasis (GPP) is a rare inflammatory skin disease that can be life-threatening. Recently, it has been reported that familial GPP is caused by homozygous or compound heterozygous mutations of IL36RN. However, the majority of GPP cases are sporadic and it is controversial whether IL36RN mutations are a causative/predisposing factor for sporadic GPP. We searched for IL36RN mutations in two groups of GPP patients in the Japanese population in this study: GPP without psoriasis vulgaris (PV), and GPP with PV. Eleven cases of GPP without PV (GPP alone) and 20 cases of GPP accompanied by PV (GPP with PV) were analyzed. Surprisingly, 9 out of 11 cases of GPP alone had homozygous or compound heterozygous mutations in IL36RN. In contrast, only 2 of 20 cases of GPP with PV had compound heterozygous mutations in IL36RN. The two cases of GPP with PV who had compound heterozygous mutations in IL36RN are siblings, and both cases had PV-susceptible HLA-A*0206. We determined that GPP alone is a distinct subtype of GPP and is etiologically distinguished from GPP with PV, and that the majority of GPP alone is caused by deficiency of the interleukin-36 receptor antagonist due to IL36RN mutations.
Publication
Journal: The Journal of investigative dermatology
December/22/2013
Publication
Journal: British Journal of Dermatology
January/13/2015
Publication
Journal: Journal of Allergy and Clinical Immunology
June/9/2015
Publication
Journal: The Journal of investigative dermatology
September/3/2013
load more...