Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(10)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Investigative Ophthalmology and Visual Science
January/25/2015
Abstract
OBJECTIVE
To comprehensively characterize human corneal endothelial cell (HCEnC) gene expression and age-dependent differential gene expression and to identify expressed genes mapped to chromosomal loci associated with the corneal endothelial dystrophies posterior polymorphous corneal dystrophy (PPCD)1, Fuchs endothelial corneal dystrophy (FECD)4, and X-linked endothelial dystrophy (XECD).
METHODS
Total RNA was isolated from ex vivo corneal endothelium obtained from six pediatric and five adult donor corneas. Complementary DNA was hybridized to the Affymetrix GeneChip 1.1ST array. Data analysis was performed using Partek Genomics Suite software, and differentially expressed genes were validated by digital molecular barcoding technology.
RESULTS
Transcripts corresponding to 12,596 genes were identified in HCEnC. Nine genes displayed the most significant differential expression between pediatric and adult HCEnC: CAPN6, HIST1H3A, HIST1H4E, and HSPA2 were expressed at higher levels in pediatric HCEnC, while ITGBL1, NALCN, PREX2, TAC1, and TMOD1 were expressed at higher levels in adult HCEnC. Analysis of the PPCD1, FECD4 and XECD loci demonstrated transcription of 53/95 protein-coding genes in the PPCD1 locus, 27/40 in the FECD4 locus, and 35/68 in the XECD locus.
CONCLUSIONS
An analysis of the HCEnC transcriptome reveals the expression of almost 13,000 genes, with less than 1% mapped to chromosomal loci associated with PPCD1, FECD4, and XECD. At least nine genes demonstrated significant differential expression between pediatric and adult HCEnC, defining specific functional properties distinct to each age group. These data will serve as a resource for vision scientists investigating HCEnC gene expression and can be used to focus the search for the genetic basis of the corneal endothelial dystrophies for which the genetic basis remains unknown.
Publication
Journal: Molecular Medicine Reports
July/29/2015
Abstract
Diffuse gliomas are the most common type of malignant primary brain tumor, and their initiation and/or progression are often associated with alternative splicing. They produce an enormous economic burden on society and greatly impair the quality of life of those affected. The aim of the current study was to explore the differentially expressed genes (DEGs) observed in glioblastoma (GBM) and oligodendroglioma (OD) at the splicing level, and to analyze their functions in order to identify the underlying molecular mechanisms of gliomas. The exon‑level expression profile data GSE9385 was downloaded from the Gene Expression Omnibus database, and included 26 GBM samples, 22 OD samples and 6 control brain samples. The differentially expressed exon‑level probes were analyzed using the microarray detection of alternative splicing algorithm combined with the splicing index method, and the corresponding DEGs were identified. Next, a Gene Ontology enrichment analysis of the DEGs was performed. Additionally, the protein‑protein interaction (PPI) networks were constructed based on the depth‑first search algorithm. A total of 300 DEGs were identified to be shared by GBM and OD, including 97 upregulated and 203 downregulated DEGs. Furthermore, screening with a defined threshold identified 6 genes that were highly expressed in GBM, including AFF2, CACNA2D3 and ARPP21, while the 6 highly expressed genes in OD notably included CNTN2. The TP53 and HIST1H3A genes were the hub nodes in the PPI network of DEGs from GBM, while CNTN2 was linked to the highest degree in the OD PPI network. The present study provides a comprehensive bioinformatics analysis of DEGs in GBM and OD, which may provide a basis for understanding the initiation and/or progression of glioma development.
Publication
Journal: Neuro-Oncology
April/3/2019
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive pediatric brain tumors that are characterized by a recurrent mutation (K27M) within the histone H3 encoding genes H3F3A or HIST1H3A/B/C. These mutations have been shown to induce a global reduction in the repressive histone modification H3K27me3, which together with widespread changes in DNA methylation patterns results in an extensive transcriptional reprogramming hampering the identification of single therapeutic targets based on a molecular rationale.We applied a large-scale gene knockdown approach using a pooled shRNA library in combination with next-generation sequencing in order to identify DIPG-specific vulnerabilities. The therapeutic potential of specific inhibitors of candidate targets was validated in a secondary drug screen.We identified fibroblast growth factor receptor (FGFR) signaling and the serine/threonine protein phosphatase 2A (PP2A) as top depleted hits in patient-derived DIPG cell cultures and validated their lethal potential by FGF ligand depletion and genetic knockdown of the PP2A structural subunit PPP2R1A. Further, pharmacological inhibition of FGFR and PP2A signaling through ponatinib and LB-100 treatment, respectively, exhibited strong tumor-specific anti-proliferative and apoptotic activity in cultured DIPG cells.Our findings suggest FGFR and PP2A signaling as potential new therapeutic targets for the treatment of DIPGs.
Publication
Journal: Gynecologic Oncology
October/30/2019
Abstract
Uterine sarcoma (US) is a highly malignant cancer with poor prognosis and high mortality. This study focused on the identification of a RNA-Seq expression signature for prognosis prediction in uterine sarcoma.We obtained RNA-Seq expression profiles from The Cancer Genome Atlas database, and differentially expressed genes were identified between US tissues and normal tissues. Univariate Cox proportional hazards regression analysis and LASSO Cox model were performed to identify and construct the prognostic gene signature. Time-dependent receiver operating characteristic, Kaplan-Meier curve and multivariate Cox regression analysis were used to assess the prognostic capacity of the six-gene signature. The nomogram was developed including prognostic signature and independent clinical factors to predict the overall survival (OS) of US patients. The functional enrichment and somatic mutation analysis were also analyzed by bioinformatics to understand the molecular mechanisms.This study identified a prognostic signature based on 6 genes: FGF23, TLX2, TIFAB, RNF223, HIST1H3A and AADACL4. In the training group, the median OS in the high- and low-risk groups was 19.6 vs 88.1 months (HR, 0.1412, 95% CI: 0.03295 - 0.6054; P = 0.002), respectively. In the testing group, the median OS in the high- and low-risk groups were 30 vs NR (not reach) months (HR, <0.0001, 95% CI: 0 - inf; P = 0.03). In all of patients, the low-risk group showed significant better survival compared with the high-risk group in OS, PFI, DSS and DFI. The nomogram based on the gene signature and radiation therapy was developed and successfully predicted the OS of US patients. The patients in the high-risk group displayed distinct mutation signatures comparing to patients in the low-risk group. Functional enrichment analysis indicated that the signature can play a vital role in cancer-related biological processes.Our study established a novel 6-gene signature and nomogram which could improve prognosis prediction in patients with US.
Publication
Journal: Frontiers in Genetics
May/19/2020
Abstract
Sirtuins are protein deacetylases that play a protective role in cardiovascular diseases (CVDs), as well as many other diseases. Absence of sirtuins can lead to hyperacetylation of both nuclear and mitochondrial proteins leading to metabolic dysregulation. The protein post-translational modifications (PTMs) are known to crosstalk among each other to bring about complex phenotypic outcomes. Various PTM types such as acetylation, ubiquitination, and phosphorylation, and so on, drive transcriptional regulation and metabolism, but such crosstalks are poorly understood. We integrated protein-protein interactions (PPI) and PTMs from several databases to integrate information on 1,251 sirtuin-interacting proteins, of which 544 are associated with cardiac diseases. Based on the ∼100,000 PTM sites obtained for sirtuin interactors, we observed that the frequency of PTM sites (83 per protein), as well as PTM types (five per protein), is higher than the global average for human proteome. We found that ∼60-70% PTM sites fall into ordered regions. Approximately 83% of the sirtuin interactors contained at least one competitive crosstalk (in situ) site, with half of the sites occurring in CVD-associated proteins. A large proportion of identified crosstalk sites were observed for acetylation and ubiquitination competition. We identified 614 proteins containing PTM hotspots (≥5 PTM sites) and 133 proteins containing crosstalk hotspots (≥3 crosstalk sites). We observed that a large proportion of disease-associated sequence variants were found in PTM motifs of CVD proteins. We identified seven proteins (TP53, LMNA, MAPT, ATP2A2, NCL, APEX1, and HIST1H3A) containing disease-associated variants in PTM and crosstalk hotspots. This is the first comprehensive bioinformatics analysis on sirtuin interactors with respect to PTMs and their crosstalks. This study forms a platform for generating interesting hypotheses that can be tested for a deeper mechanistic understanding gained or derived from big-data analytics.
Keywords: cancer; cardiovascular diseases; crosstalk; hotspot; modifications; neurodegenerative; protein–protein interactions; variant.
Publication
Journal: Viral Immunology
January/26/2016
Abstract
The role of human papillomavirus (HPV) in human disease includes external genital and perianal warts (EGW), with some HPV genotypes having oncogenic potential (i.e., HPV-16 and -18). While green-tea extracts have antitumor and antiproliferative effects in vitro, the mechanism of action of sinecatechins in the treatment of EGW is not well understood. To investigate the role of immune-regulated genes further, an open-label, single institution, prospective study was conducted enrolling patients with clinically diagnosed EGW. Thirty subjects were enrolled, and 18 completed the trial. All patients applied sinecatechins 15% ointment to target lesions in the study. RNA expression microarrays were obtained from treated EGW lesions and analyzed for differential gene expression of immune-regulated genes. HPV types were analyzed and, based on copy number, were stratified into virological responders (VR) or nonresponders (VNR). Gene expression analysis of RNA samples was performed using TaqMan arrays for human T cell receptor and CD3 complex (TCR), Toll-like receptors (TLR) pathway, interferon (IFN) pathway, and antigen processing pathway. A total of 256 genes were analyzed across the four arrays. Genes that were significantly regulated between VRs and VNRs were CREB3L4, HIST1H3A, HIST1H3H, IFNA1, IFNA4, IFNA5, IFNA6, IFNA8, IFNA14, IFNG, IFNAR1, IL6, IRF9, MAPK4, MAPK5, MAPK14, NET1, and PIK3C2A in the IFN array. In the TCR array, HLA_B was found to be statistically significantly upregulated in both the VR and VNR groups; concomitantly, CD8A was found to be statistically significantly downregulated only in VRs. In the TLR array, only LBP and MAPK8 were found to be differentially regulated. In the antigen processing array, HLA-A, HLA-C, HLA-DMA, HLA-DMB, HLA-F, PSMA5, PSMB8, and PSMB9 were differentially downregulated. Based on these findings, it was determined that sinecatechins treatment modulates and downregulates genes involved in the pro-inflammatory response to HPV infection.
Publication
Journal: Journal of Functional Biomaterials
February/22/2016
Abstract
The aim of the present study was to investigate the molecular mechanisms underlying activation of cell death pathways using genome-wide transcriptional analysis in human limbal epithelial cell (HLEC) cultures following conventional hypothermic storage in Optisol-GS. Three-week HLEC cultures were stored in Optisol-GS for 2, 4, and 7 days at 4 °C. Partek Genomics Suite software v.6.15.0422, (Partec Inc., St. Louis, MO, USA) was used to identify genes that showed significantly different (P < 0.05) levels of expression following hypothermic storage compared to non-stored cell sheets. There were few changes in gene expression after 2 days of storage, but several genes were differently regulated following 4 and 7 days of storage. The histone-coding genes HIST1H3A and HIST4H4 were among the most upregulated genes following 4 and 7 days of hypothermic storage. Bioinformatic analysis suggested that these two genes are involved in a functional network highly associated with cell death, necrosis, and transcription of RNA. HDAC1, encoding histone deacetylase 1, was the most downregulated gene after 7 days of storage. Together with other downregulated genes, it is suggested that HDAC1 is involved in a regulating network significantly associated with cellular function and maintenance, differentiation of cells, and DNA repair. Our data suggest that the upregulated expression of histone-coding genes together with downregulated genes affecting cell differentiation and DNA repair may be responsible for increased cell death following hypothermic storage of cultured HLEC. In summary, our results demonstrated that a higher number of genes changed with increasing storage time. Moreover, in general, larger differences in absolute gene expression values were observed with increasing storage time. Further understanding of these molecular mechanisms is important for optimization of storage technology for limbal epithelial sheets.
Publication
Journal: American Journal of Translational Research
May/1/2020
Abstract
Fanconi anemia (FA) is a congenital aplastic anemia, characterized as congenital bone marrow failure, developmental malformation, and the malignant tendency, which may develop into acute myeloid leukemia (AML). However, few studies have been conducted on the progression from FA to AML. In this study, we used proteomic profiling, together with bioinformatics analyses, to explore the molecular mechanisms by which FA progresses to AML. Quantitative proteomic analyses of bone marrow samples identified 168 differentially expressed proteins (DEPs), including 7 upregulated proteins and 161 downregulated proteins in the bone marrow of the FA patient compared with the healthy people. The upregulated proteins were enriched in response to stress, oxygen transport, and hydrogen peroxide catabolic process. The downregulated proteins were enriched in myeloid leukocyte mediated immunity, response to interleukin-12, platelet degranulation and regulation of ATPase activity. Based on these results, we discovered 155 DEPs (142 upregulated and 13 downregulated) in the bone marrow samples between FA and AML patients, of which HIST1H1D, HIST1H3A, PSME1 and THRAP3 may play important roles in the progression of FA to AML and may be used as markers for AML early diagnosis. Finally, cell-line based experiments confirmed that PSME1 had an important effect on the proliferation of leukemia cells.
Publication
Journal: Journal of Oncology
July/13/2021
Abstract
Objective: Zao-Jiao-Ci (ZJC), a traditional Chinese medicine, is considered as a promising candidate to treat laryngeal squamous cell carcinoma (LSCC). However, the underlying molecular mechanism remains unclear.
Methods: Gene expression profiles of GSE36668 were available from the GEO database, and differentially expressed genes (DEGs) of LSCC were obtained by R package; subsequently, enrichment analysis on KEGG and GO of DEGs was performed. The active ingredients of ZJC were screened from the TCMSP database, and the matched candidate targets were obtained by PharmMapper. Furthermore, we constructed protein-protein interaction (PPI) networks of DEGs and candidate targets, respectively, and we screened the core network from the merged network through combining the two PPI networks using Cytoscape 3.7.2. The key targets derived from the core network were analyzed to find out the associated KEGG signal enrichment pathway. By the GEPIA online website, Kaplan-Meier analysis was used to complete the overall survival and disease-free survival of the selected genes in the core module.
Results: We identified 96 candidate targets of ZJC and 86 DEGs of LSCC, the latter including 50 upregulated genes and 36 downregulated genes. DEGs were obviously enriched in the following biological functions: extracellular structure organization, the extracellular matrix organization, and endodermal cell differentiation. The 60 key targets from the core network were enriched in the signal pathways including transcriptional misregulation cancer, cell cycle, and so on. We found that LSCC patients with high expression of HIST1H3J, HIST1H3F, and ITGA4 had worse overall survival, while higher expression of NTRK1, COPS5, HIST1H3A, and HIST1H3G had significantly worse disease-free survival.
Conclusion: It suggested that the interaction between ZJC and LSCC was related to the signal pathways of transcriptional misregulation cancer and cell cycle, revealing that it may be the mechanism of ZJC in the treatment of LSCC.
Publication
Journal: Genes
December/23/2021
Abstract
DNA methylation and histone posttranslational modifications are epigenetics processes that contribute to neurophenotype of Down Syndrome (DS). Previous reports present strong evidence that nonhistone high-mobility-group N proteins (HMGN) are epigenetic regulators. They play important functions in various process to maintain homeostasis in the brain. We aimed to analyze the differential expression of five human HMGN genes in some brain structures and age ranks from DS postmortem brain samples. Methodology: We performed a computational analysis of the expression of human HMGN from the data of a DNA microarray experiment (GEO database ID GSE59630). Using the transformed log2 data, we analyzed the differential expression of five HMGN genes in several brain areas associated with cognition in patients with DS. Moreover, using information from different genome databases, we explored the co-expression and protein interactions of HMNGs with the histones of nucleosome core particle and linker H1 histone. Results: We registered that HMGN1 and HMGN5 were significantly overexpressed in the hippocampus and areas of prefrontal cortex including DFC, OFC, and VFC of DS patients. Age-rank comparisons between euploid control and DS individuals showed that HMGN2 and HMGN4 were overexpressed in the DS brain at 16 to 22 gestation weeks. From the BioGRID database, we registered high interaction scores of HMGN2 and HMGN4 with Hist1H1A and Hist1H3A. Conclusions: Overall, our results give strong evidence to propose that DS would be an epigenetics-based aneuploidy. Remodeling brain chromatin by HMGN1 and HMGN5 would be an essential pathway in the modification of brain homeostasis in DS.
Keywords: Down Syndrome; epigenetics; gene expression; high-mobility-group N proteins (HMGN); human brain; neuroinformatics.