wfs1 - wolfram syndrome 1
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(276)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Genetics
August/19/2010
Abstract
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
Publication
Journal: Nature Genetics
April/22/2014
Abstract
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
Publication
Journal: New England Journal of Medicine
November/24/2008
Abstract
BACKGROUND
Type 2 diabetes mellitus is thought to develop from an interaction between environmental and genetic factors. We examined whether clinical or genetic factors or both could predict progression to diabetes in two prospective cohorts.
METHODS
We genotyped 16 single-nucleotide polymorphisms (SNPs) and examined clinical factors in 16,061 Swedish and 2770 Finnish subjects. Type 2 diabetes developed in 2201 (11.7%) of these subjects during a median follow-up period of 23.5 years. We also studied the effect of genetic variants on changes in insulin secretion and action over time.
RESULTS
Strong predictors of diabetes were a family history of the disease, an increased body-mass index, elevated liver-enzyme levels, current smoking status, and reduced measures of insulin secretion and action. Variants in 11 genes (TCF7L2, PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX) were significantly associated with the risk of type 2 diabetes independently of clinical risk factors; variants in 8 of these genes were associated with impaired beta-cell function. The addition of specific genetic information to clinical factors slightly improved the prediction of future diabetes, with a slight increase in the area under the receiver-operating-characteristic curve from 0.74 to 0.75; however, the magnitude of the increase was significant (P=1.0x10(-4)). The discriminative power of genetic risk factors improved with an increasing duration of follow-up, whereas that of clinical risk factors decreased.
CONCLUSIONS
As compared with clinical risk factors alone, common genetic variants associated with the risk of diabetes had a small effect on the ability to predict the future development of type 2 diabetes. The value of genetic factors increased with an increasing duration of follow-up.
Publication
Journal: Cell
December/21/2006
Abstract
The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasmic reticulum (ER). Cell-surface rescue of the most common disease variant that is restricted to the ER, DeltaF508, can be initiated by partial siRNA silencing of the Hsp90 cochaperone ATPase regulator Aha1. We propose that failure of DeltaF508 to achieve an energetically favorable fold in response to the steady-state dynamics of the chaperone folding environment (the "chaperome") is responsible for the pathophysiology of CF. The activity of cargo-associated chaperome components may be a common mechanism regulating folding for ER exit, providing a general framework for correction of misfolding disease.
Publication
Journal: Nature Genetics
October/27/1998
Abstract
Wolfram syndrome (WFS; OMIM 222300) is an autosomal recessive neurodegenerative disorder defined by young-onset non-immune insulin-dependent diabetes mellitus and progressive optic atrophy. Linkage to markers on chromosome 4p was confirmed in five families. On the basis of meiotic recombinants and disease-associated haplotypes, the WFS gene was localized to a BAC/P1 contig of less than 250 kb. Mutations in a novel gene (WFS1) encoding a putative transmembrane protein were found in all affected individuals in six WFS families, and these mutations were associated with the disease phenotype. WFS1 appears to function in survival of islet beta-cells and neurons.
Publication
Journal: Nature Genetics
September/18/2007
Abstract
We studied genes involved in pancreatic beta cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.
Publication
Journal: Diabetes
December/30/2008
Abstract
OBJECTIVE
Genome-wide association studies have dramatically increased the number of common genetic variants that are robustly associated with type 2 diabetes. A possible clinical use of this information is to identify individuals at high risk of developing the disease, so that preventative measures may be more effectively targeted. Here, we assess the ability of 18 confirmed type 2 diabetes variants to differentiate between type 2 diabetic case and control subjects.
METHODS
We assessed index single nucleotide polymorphisms (SNPs) for the 18 independent loci in 2,598 control subjects and 2,309 case subjects from the Genetics of Diabetes Audit and Research Tayside Study. The discriminatory ability of the combined SNP information was assessed by grouping individuals based on number of risk alleles carried and determining relative odds of type 2 diabetes and by calculating the area under the receiver-operator characteristic curve (AUC).
RESULTS
Individuals carrying more risk alleles had a higher risk of type 2 diabetes. For example, 1.2% of individuals with >24 risk alleles had an odds ratio of 4.2 (95% CI 2.11-8.56) against the 1.8% with 10-12 risk alleles. The AUC (a measure of discriminative accuracy) for these variants was 0.60. The AUC for age, BMI, and sex was 0.78, and adding the genetic risk variants only marginally increased this to 0.80.
CONCLUSIONS
Currently, common risk variants for type 2 diabetes do not provide strong predictive value at a population level. However, the joint effect of risk variants identified subgroups of the population at substantially different risk of disease. Further studies are needed to assess whether individuals with extreme numbers of risk alleles may benefit from genetic testing.
Publication
Journal: Diabetes
December/30/2008
Abstract
OBJECTIVE
Prediction of type 2 diabetes based on genetic testing might improve identification of high-risk subjects. Genome-wide association (GWA) studies identified multiple new genetic variants that associate with type 2 diabetes. The predictive value of genetic testing for prediction of type 2 diabetes in the general population is unclear.
METHODS
We investigated 18 polymorphisms from recent GWA studies on type 2 diabetes in the Rotterdam Study, a prospective, population-based study among homogeneous Caucasian individuals of 55 years and older (genotyped subjects, n = 6,544; prevalent cases, n = 686; incident cases during follow-up, n = 601; mean follow-up 10.6 years). The predictive value of these polymorphisms was examined alone and in addition to clinical characteristics using logistic and Cox regression analyses. The discriminative accuracy of the prediction models was assessed by the area under the receiver operating characteristic curves (AUCs).
RESULTS
Of the 18 polymorphisms, the ADAMTS9, CDKAL1, CDKN2A/B-rs1412829, FTO, IGF2BP2, JAZF1, SLC30A8, TCF7L2, and WFS1 variants were associated with type 2 diabetes risk in our population. The AUC was 0.60 (95% CI 0.57-0.63) for prediction based on the genetic polymorphisms; 0.66 (0.63-0.68) for age, sex, and BMI; and 0.68 (0.66-0.71) for the genetic polymorphisms and clinical characteristics combined.
CONCLUSIONS
We showed that 9 of 18 well-established genetic risk variants were associated with type 2 diabetes in a population-based study. Combining genetic variants has low predictive value for future type 2 diabetes at a population-based level. The genetic polymorphisms only marginally improved the prediction of type 2 diabetes beyond clinical characteristics.
Publication
Journal: Journal of Clinical Investigation
March/30/2010
Abstract
Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.
Publication
Journal: Human Molecular Genetics
January/20/1999
Abstract
Wolfram syndrome is an autosomal recessive disorder characterized by juvenile diabetes mellitus, diabetes insipidus, optic atrophy and a number of neurological symptoms including deafness, ataxia and peripheral neuropathy. Mitochondrial DNA deletions have been described in a few patients and a locus has been mapped to 4p16 by linkage analysis. Susceptibility to psychiatric illness is reported to be high in affected individuals and increased in heterozygous carriers in Wolfram syndrome families. We screened four candidate genes in a refined critical linkage interval covered by an unfinished genomic sequence of 600 kb. One of these genes, subsequently named wolframin, codes for a predicted transmembrane protein which was expressed in various tissues, including brain and pancreas, and carried loss-of-function mutations in both alleles in Wolfram syndrome patients.
Publication
Journal: Annals of Internal Medicine
April/30/2009
Abstract
BACKGROUND
Genome-wide association studies have identified novel type 2 diabetes loci, each of which has a modest impact on risk.
OBJECTIVE
To examine the joint effects of several type 2 diabetes risk variants and their combination with conventional risk factors on type 2 diabetes risk in 2 prospective cohorts.
METHODS
Nested case-control study.
METHODS
United States.
METHODS
2809 patients with type 2 diabetes and 3501 healthy control participants of European ancestry from the Health Professionals Follow-up Study and Nurses' Health Study.
METHODS
A genetic risk score (GRS) was calculated on the basis of 10 polymorphisms in 9 loci.
RESULTS
After adjustment for age and body mass index (BMI), the odds ratio for type 2 diabetes with each point of GRS, corresponding to 1 risk allele, was 1.19 (95% CI, 1.14 to 1.24) and 1.16 (CI, 1.12 to 1.20) for men and women, respectively. Persons with a BMI of 30 kg/m(2) or greater and a GRS in the highest quintile had an odds ratio of 14.06 (CI, 8.90 to 22.18) compared with persons with a BMI less than 25 kg/m(2) and a GRS in the lowest quintile after adjustment for age and sex. Persons with a positive family history of diabetes and a GRS in the highest quintile had an odds ratio of 9.20 (CI, 5.50 to 15.40) compared with persons without a family history of diabetes and with a GRS in the lowest quintile. The addition of the GRS to a model of conventional risk factors improved discrimination by 1% (P < 0.001).
CONCLUSIONS
The study focused only on persons of European ancestry; whether GRS is associated with type 2 diabetes in other ethnic groups remains unknown.
CONCLUSIONS
Although its discriminatory value is currently limited, a GRS that combines information from multiple genetic variants might be useful for identifying subgroups with a particularly high risk for type 2 diabetes.
BACKGROUND
National Institutes of Health.
Publication
Journal: Journal of Biological Chemistry
February/2/2006
Abstract
In Wolfram syndrome, a rare form of juvenile diabetes, pancreatic beta-cell death is not accompanied by an autoimmune response. Although it has been reported that mutations in the WFS1 gene are responsible for the development of this syndrome, the precise molecular mechanisms underlying beta-cell death caused by the WFS1 mutations remain unknown. Here we report that WFS1 is a novel component of the unfolded protein response and has an important function in maintaining homeostasis of the endoplasmic reticulum (ER) in pancreatic beta-cells. WFS1 encodes a transmembrane glyco-protein in the ER. WFS1 mRNA and protein are induced by ER stress. The expression of WFS1 is regulated by inositol requiring 1 and PKR-like ER kinase, central regulators of the unfolded protein response. WFS1 is normally up-regulated during insulin secretion, whereas inactivation of WFS1 in beta-cells causes ER stress and beta-cell dysfunction. These results indicate that the pathogenesis of Wolfram syndrome involves chronic ER stress in pancreatic beta-cells caused by the loss of function of WFS1.
Publication
Journal: Autism Research
November/22/2009
Abstract
Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.
Publication
Journal: Human Molecular Genetics
November/8/2004
Abstract
Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene. In order to gain insight into the pathophysiology of this disease, we disrupted the wfs1 gene in mice. The mutant mice developed glucose intolerance or overt diabetes due to insufficient insulin secretion in vivo. Islets isolated from mutant mice exhibited a decrease in insulin secretion in response to glucose. The defective insulin secretion was accompanied by reduced cellular calcium responses to the secretagogue. Immunohistochemical analyses with morphometry and measurement of whole-pancreas insulin content demonstrated progressive beta-cell loss in mutant mice, while the alpha-cell, which barely expresses WFS1 protein, was preserved. Furthermore, isolated islets from mutant mice exhibited increased apoptosis, as assessed by DNA fragment formation, at high concentration of glucose or with exposure to endoplasmic reticulum-stress inducers. These results strongly suggest that WFS1 protein plays an important role in both stimulus-secretion coupling for insulin exocytosis and maintenance of beta-cell mass, deterioration of which leads to impaired glucose homeostasis. These WFS1 mutant mice provide a valuable tool for understanding better the pathophysiology of Wolfram syndrome as well as WFS1 function.
Publication
Journal: Human Molecular Genetics
June/13/2001
Abstract
Wolfram (DIDMOAD) syndrome is an autosomal recessive neurodegenerative disorder accompanied by insulin-dependent diabetes mellitus and progressive optic atrophy. Recent positional cloning led to identification of the WFS1 (Wolfram syndrome 1) gene, a member of a novel gene family of unknown function. In this study, we generated a specific antibody against the C-terminus of the WFS1 protein and investigated its subcellular localization in cultured cells. We also studied its distribution in the rat brain. Biochemical studies indicated the WFS1 protein to be an integral, endoglycosidase H-sensitive membrane glycoprotein that localizes primarily in the endoplasmic reticulum (ER). Consistent with this, immunofluorescence cell staining of overexpressed WFS1 showed a characteristic reticular pattern over the cytoplasm and overlapped with the ER marker staining. No co-localization of WFS1 with mitochondria argues against an earlier clinical hypothesis that Wolfram syndrome is a mitochondria-mediated disorder. In the rat brain, at both the protein and mRNA level, WFS1 was found to be present predominantly in selected neurons in the hippocampus CA1, amygdaloid areas, olfactory tubercle and superficial layer of the allocortex. These expression sites, i.e. components of the limbic system or structures closely associated with this system, may be involved in the psychiatric, behavioral and emotional abnormalities characteristic of this syndrome. ER localization of WFS1 suggests that this protein plays an as yet undefined role in membrane trafficking, protein processing and/or regulation of ER calcium homeostasis. These studies represent a first step toward the characterization of WFS1 protein, which presumably functions to maintain certain populations of neuronal and endocrine cells.
Publication
Journal: Diabetologia
January/25/2006
Abstract
OBJECTIVE
Wolfram syndrome is an autosomal recessive disorder characterised by childhood diabetes mellitus, optic atrophy and severe neurodegeneration, resulting in premature death. The aim of this study was to investigate the mechanisms responsible for the phenotype of carbohydrate intolerance and loss of pancreatic beta cells in this disorder.
METHODS
To study the role of the Wolfram gene (Wfs1) in beta cells, we developed a mouse model with conditional deletion of Wfs1 in beta cells by crossing floxed Wfs1 exon 8 animals with mice expressing Cre recombinase under the control of a rat insulin promoter (RIP2-Cre). Complementary experiments using RNA interference of Wfs1 expression were performed in mouse insulinoma (MIN6) cell lines (WfsKD).
RESULTS
Male knockout mice (betaWfs(-/-)) began developing variable and progressive glucose intolerance and concomitant insulin deficiency, compared with littermate controls, by 12 weeks of age. Analysis of islets from betaWfs(-/-) mice revealed a reduction in beta cell mass, enhanced apoptosis, elevation of a marker of endoplasmic reticulum stress (immunoglobulin heavy chain-binding protein [BiP]), and dilated endoplasmic reticulum with decreased secretory granules by electron microscopy. WfsKD cell lines had significantly increased apoptosis and elevated expression of the genes encoding BiP and C/EBP-homologous protein (CHOP), two markers of endoplasmic reticulum stress.
CONCLUSIONS
These results indicate that (1) lack of expression of Wfs1 in beta cells was sufficient to result in the diabetes mellitus phenotype; (2) beta cell death occurred by an accelerated process of apoptosis; and (3) lack of Wfs1 was associated with dilated endoplasmic reticulum and increased markers of endoplasmic reticulum stress, which appears to be a significant contributor to the reduction in beta cell survival.
Publication
Journal: Diabetes Care
May/1/2011
Abstract
OBJECTIVE
To test if knowledge of type 2 diabetes genetic variants improves disease prediction.
METHODS
We tested 40 single nucleotide polymorphisms (SNPs) associated with diabetes in 3,471 Framingham Offspring Study subjects followed over 34 years using pooled logistic regression models stratified by age (<50 years, diabetes cases = 144; or ≥50 years, diabetes cases = 302). Models included clinical risk factors and a 40-SNP weighted genetic risk score.
RESULTS
In people <50 years of age, the clinical risk factors model C-statistic was 0.908; the 40-SNP score increased it to 0.911 (P = 0.3; net reclassification improvement (NRI): 10.2%, P = 0.001). In people ≥50 years of age, the C-statistics without and with the score were 0.883 and 0.884 (P = 0.2; NRI: 0.4%). The risk per risk allele was higher in people <50 than ≥50 years of age (24 vs. 11%; P value for age interaction = 0.02).
CONCLUSIONS
Knowledge of common genetic variation appropriately reclassifies younger people for type 2 diabetes risk beyond clinical risk factors but not older people.
Publication
Journal: PLoS ONE
March/11/2010
Abstract
BACKGROUND
Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism.
RESULTS
Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006).
CONCLUSIONS
The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.
Publication
Journal: Human Molecular Genetics
October/2/2006
Abstract
Wolfram syndrome, an autosomal recessive disorder associated with diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene encoding an endoplasmic reticulum (ER) membrane protein. Herein, we report that pancreatic islets of wfs1-deficient mice exhibit increases in phosphorylation of RNA-dependent protein kinase-like ER kinase, chaperone gene expressions and active XBP1 protein levels, indicating an enhanced ER stress response. We established wfs1-deficient MIN6 clonal beta-cells by crossing wfs1-deficient mice with mice expressing simian virus 40 large T antigen in beta-cells. These cells show essentially the same alterations in ER stress responses as wfs1-deficient islets, which were reversed by re-expression of WFS1 protein or overexpression of GRP78, a master regulator of the ER stress response. In contrast, these changes are not observed in heart, skeletal muscle or brown adipose tissues with WFS1-deficiency. The increased ER stress response was accompanied by reduced BrdU incorporation and increased caspase-3 cleavage, indicating impaired cell cycle progression and accelerated apoptotic processes in the mutant islets. These changes are associated with increased expression of the cell cycle regulator p21(CIP1) in wfs1-deficient islets and clonal beta-cells. Treatment of islets with thapsigargin, an ER stress inducer, caused upregulation of p21(CIP1). In addition, forced expression of p21(CIP1) resulted in reduced MIN6 beta-cell numbers, suggesting the ER stress-induced increase in p21(CIP1) expression to be involved in beta-cell loss in the mutant islets. These data indicate that WFS1-deficiency activates the ER stress response specifically in beta-cells, causing beta-cell loss through impaired cell cycle progression and increased apoptosis.
Publication
Journal: Diabetes
September/29/2009
Abstract
OBJECTIVE
We investigated the effects of 18 confirmed type 2 diabetes risk single nucleotide polymorphisms (SNPs) on insulin sensitivity, insulin secretion, and conversion of proinsulin to insulin.
METHODS
A total of 5,327 nondiabetic men (age 58 +/- 7 years, BMI 27.0 +/- 3.8 kg/m(2)) from a large population-based cohort were included. Oral glucose tolerance tests and genotyping of SNPs in or near PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, LOC387761, CDKN2B, IGF2BP2, CDKAL1, HNF1B, WFS1, JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, NOTCH2, KCNQ1, and MTNR1B were performed. HNF1B rs757210 was excluded because of failure to achieve Hardy-Weinberg equilibrium.
RESULTS
Six SNPs (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, and MTNR1B) were significantly (P < 6.9 x 10(-4)) and two SNPs (KCNJ11 and IGF2BP2) were nominally (P < 0.05) associated with early-phase insulin release (InsAUC(0-30)/GluAUC(0-30)), adjusted for age, BMI, and insulin sensitivity (Matsuda ISI). Combined effects of these eight SNPs reached -32% reduction in InsAUC(0-30)/GluAUC(0-30) in carriers of>>or=11 vs. <or=3 weighted risk alleles. Four SNPs (SLC30A8, HHEX, CDKAL1, and TCF7L2) were significantly or nominally associated with indexes of proinsulin conversion. Three SNPs (KCNJ11, HHEX, and TSPAN8) were nominally associated with Matsuda ISI (adjusted for age and BMI). The effect of HHEX on Matsuda ISI became significant after additional adjustment for InsAUC(0-30)/GluAUC(0-30). Nine SNPs did not show any associations with examined traits.
CONCLUSIONS
Eight type 2 diabetes-related loci were significantly or nominally associated with impaired early-phase insulin release. Effects of SLC30A8, HHEX, CDKAL1, and TCF7L2 on insulin release could be partially explained by impaired proinsulin conversion. HHEX might influence both insulin release and insulin sensitivity.
Publication
Journal: Cell
June/28/2016
Abstract
While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell Metabolism
April/28/2008
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis may play a crucial role in loss of pancreatic beta cell mass, contributing to the development of diabetes. Here we show that induction of 4E-BP1, the suppressor of the mRNA 5' cap-binding protein eukaryotic initiation factor 4E (eIF4E), is involved in beta cell survival under ER stress. 4E-BP1 expression was increased in islets under ER stress in several mouse models of diabetes. The Eif4ebp1 gene encoding 4E-BP1 was revealed to be a direct target of the transcription factor ATF4. Deletion of the Eif4ebp1 gene increased susceptibility to ER stress-mediated apoptosis in MIN6 beta cells and mouse islets, which was accompanied by deregulated translational control. Furthermore, Eif4ebp1 deletion accelerated beta cell loss and exacerbated hyperglycemia in mouse models of diabetes. Thus, 4E-BP1 induction contributes to the maintenance of beta cell homeostasis during ER stress and is a potential therapeutic target for diabetes.
Publication
Journal: Diabetes
February/24/2010
Abstract
OBJECTIVE
Recently, results from a meta-analysis of genome-wide association studies have yielded a number of novel type 2 diabetes loci. However, conflicting results have been published regarding their effects on insulin secretion and insulin sensitivity. In this study we used hyperglycemic clamps with three different stimuli to test associations between these novel loci and various measures of beta-cell function.
METHODS
For this study, 336 participants, 180 normal glucose tolerant and 156 impaired glucose tolerant, underwent a 2-h hyperglycemic clamp. In a subset we also assessed the response to glucagon-like peptide (GLP)-1 and arginine during an extended clamp (n = 123). All subjects were genotyped for gene variants in JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, THADA, ADAMTS9, NOTCH2/ADAMS30, DCD, VEGFA, BCL11A, HNF1B, WFS1, and MTNR1B.
RESULTS
Gene variants in CDC123/CAMK1D, ADAMTS9, BCL11A, and MTNR1B affected various aspects of the insulin response to glucose (all P < 6.9 x 10(-3)). The THADA gene variant was associated with lower beta-cell response to GLP-1 and arginine (both P < 1.6 x 10(-3)), suggesting lower beta-cell mass as a possible pathogenic mechanism. Remarkably, we also noted a trend toward an increased insulin response to GLP-1 in carriers of MTNR1B (P = 0.03), which may offer new therapeutic possibilities. The other seven loci were not detectably associated with beta-cell function.
CONCLUSIONS
Diabetes risk alleles in CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B are associated with various specific aspects of beta-cell function. These findings point to a clear diversity in the impact that these various gene variants may have on (dys)function of pancreatic beta-cells.
Publication
Journal: Journal of Human Genetics
February/9/2009
Abstract
According to recent genome-wide association studies, a number of single nucleotide polymorphisms (SNPs) are reported to be associated with type 2 diabetes mellitus (T2DM). The aim of the present study was to investigate the association among the polymorphisms of SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1 and KCNQ1 and the risk of T2DM in the Korean population. This study was based on a multicenter case-control study, including 908 patients with T2DM and 502 non-diabetic controls. We genotyped rs13266634, rs1111875, rs10811661, rs4402960, rs8050136, rs734312, rs7754840 and rs2237892 and measured the body weight, body mass index and fasting plasma glucose in all patients and controls. The strongest association was found in a variant of CDKAL1 [rs7754840, odds ratio (OR) = 1.77, 95% CI = 1.50-2.10, p = 5.0 x 10(-11)]. The G allele of rs1111875 (OR = 1.43, 95% CI = 1.18-1.72, p = 1.8 x 10(-4)) in HHEX), the T allele of rs10811661 (OR = 1.47, 95% CI = 1.23-1.75, p = 2.1 x 10(-5)) in CDKN2A/B) and the C allele of rs2237892 (OR = 1.31, 95% CI = 1.10-1.56, p = 0.003) in KCNQ1 showed significant associations with T2DM. Rs13266634 (OR = 1.19, 95% CI = 1.00-1.42, p = 0.045) in SLC30A8 showed a nominal association with the risk of T2DM, whereas SNPs in IGF2BP2, FTO and WFS1 were not associated. In conclusion, we have shown that SNPs in HHEX, CDKN2A/B, CDKAL1, KCNQ1 and SLC30A8 confer a risk of T2DM in the Korean population.
load more...