pparg - peroxisome proliferator activated receptor gamma
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(4K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Science
June/13/2007
Abstract
New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
Publication
Journal: Science
June/13/2007
Abstract
Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.
Publication
Journal: Nature Medicine
August/22/2001
Abstract
Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Publication
Journal: Science
June/13/2007
Abstract
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
Publication
Journal: Cell
January/22/1995
Abstract
Peroxisome proliferator-activated receptor gamma 2 (PPAR gamma 2) is an adipocyte-specific nuclear hormone receptor that has recently been identified as a key regulator of two fat cell enhancers. Transcriptional activation by PPAR gamma 2 is potentiated by a variety of lipids and lipid-like compounds, including naturally occurring polyunsaturated fatty acids. We demonstrate here that retroviral expression of PPAR gamma 2 stimulates adipose differentiation of cultured fibroblasts. PPAR activators promote the differentiation of PPAR gamma 2-expressing cells in a dose-dependent manner. C/EBP alpha, a second transcription factor induced during adipocyte differentiation, can cooperate with PPAR gamma 2 to stimulate the adipocyte program dramatically. Our results suggest that the physiologic role of PPAR gamma 2 is to regulate development of the adipose lineage in response to endogenous lipid activators and that this factor may serve to link the process of adipocyte differentiation to systemic lipid metabolism.
Publication
Journal: Nature Genetics
May/21/2008
Abstract
Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
Publication
Journal: Nature Genetics
August/19/2010
Abstract
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
Publication
Journal: Nature
August/7/2007
Abstract
Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
Publication
Journal: Nature
September/4/2008
Abstract
Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.
Publication
Journal: Science
August/20/2000
Abstract
Wnts are secreted signaling proteins that regulate developmental processes. Here we show that Wnt signaling, likely mediated by Wnt-10b, is a molecular switch that governs adipogenesis. Wnt signaling maintains preadipocytes in an undifferentiated state through inhibition of the adipogenic transcription factors CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator- activated receptor gamma (PPARgamma). When Wnt signaling in preadipocytes is prevented by overexpression of Axin or dominant-negative TCF4, these cells differentiate into adipocytes. Disruption of Wnt signaling also causes transdifferentiation of myoblasts into adipocytes in vitro, highlighting the importance of this pathway not only in adipocyte differentiation but also in mesodermal cell fate determination.
Publication
Journal: Nature
July/15/2004
Abstract
Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-gamma (peroxisome proliferator-activated receptor-gamma), including genes mediating fat storage. Sirt1 represses PPAR-gamma by docking with its cofactors NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors). Mobilization of fatty acids from white adipocytes upon fasting is compromised in Sirt1+/- mice. Repression of PPAR-gamma by Sirt1 is also evident in 3T3-L1 adipocytes, where overexpression of Sirt1 attenuates adipogenesis, and RNA interference of Sirt1 enhances it. In differentiated fat cells, upregulation of Sirt1 triggers lipolysis and loss of fat. As a reduction in fat is sufficient to extend murine lifespan, our results provide a possible molecular pathway connecting calorie restriction to life extension in mammals.
Publication
Journal: Endocrine Reviews
July/30/2003
Abstract
Investigations of biological programs that are controlled by gene transcription have mainly studied the regulation of transcription factors. However, there are examples in which the primary focus of biological regulation is at the level of a transcriptional coactivator. We have reviewed here the molecular mechanisms and biological programs controlled by the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha). Key cellular signals that control energy and nutrient homeostasis, such as cAMP and cytokine pathways, strongly activate PGC-1 alpha. Once PGC-1 alpha is activated, it powerfully induces and coordinates gene expression that stimulates mitochondrial oxidative metabolism in brown fat, fiber-type switching in skeletal muscle, and multiple aspects of the fasted response in liver. The regulation of these metabolic and cell fate decisions by PGC-1 alpha is achieved through specific interaction with a variety of transcription factors such as nuclear hormone receptors, nuclear respiratory factors, and muscle-specific transcription factors. PGC-1 alpha therefore constitutes one of the first and clearest examples in which biological programs are chiefly regulated by a transcriptional coactivator in response to environmental stimuli. Finally, PGC-1 alpha's control of energy homeostasis suggests that it could be a target for anti-obesity or diabetes drugs.
Publication
Journal: Nature Reviews Immunology
January/4/2012
Abstract
In terms of both phenotype and function, macrophages have remarkable heterogeneity, which reflects the specialization of tissue-resident macrophages in microenvironments as different as liver, brain and bone. Also, marked changes in the activity and gene expression programmes of macrophages can occur when they come into contact with invading microorganisms or injured tissues. Therefore, the macrophage lineage includes a remarkable diversity of cells with different functions and functional states that are specified by a complex interplay between microenvironmental signals and a hardwired differentiation programme that determines macrophage identity. In this Review, we summarize the current knowledge of transcriptional and chromatin-mediated control of macrophage polarization in physiology and disease.
Publication
Journal: Molecular Cell
November/25/1999
Abstract
The process of adipogenesis is known to involve the interplay of several transcription factors. Activation of one of these factors, the nuclear hormone receptor PPAR gamma, is known to promote fat cell differentiation in vitro. Whether PPAR gamma is required for this process in vivo has remained an open question because a viable loss-of-function model for PPAR gamma has been lacking. We demonstrate here that mice chimeric for wild-type and PPAR gamma null cells show little or no contribution of null cells to adipose tissue, whereas most other organs examined do not require PPAR gamma for proper development. In vitro, the differentiation of ES cells into fat is shown to be dependent on PPAR gamma gene dosage. These data provide direct evidence that PPAR gamma is essential for the formation of fat.
Publication
Journal: Molecular Cell
November/25/1999
Abstract
The nuclear hormone receptor PPAR gamma promotes adipogenesis and macrophage differentiation and is a primary pharmacological target in the treatment of type II diabetes. Here, we show that PPAR gamma gene knockout results in two independent lethal phases. Initially, PPAR gamma deficiency interferes with terminal differentiation of the trophoblast and placental vascularization, leading to severe myocardial thinning and death by E10.0. Supplementing PPAR gamma null embryos with wild-type placentas via aggregation with tetraploid embryos corrects the cardiac defect, implicating a previously unrecognized dependence of the developing heart on a functional placenta. A tetraploid-rescued mutant surviving to term exhibited another lethal combination of pathologies, including lipodystrophy and multiple hemorrhages. These findings both confirm and expand the current known spectrum of physiological functions regulated by PPAR gamma.
Publication
Journal: Genes and Development
November/17/1994
Abstract
Previously, we have isolated and characterized an enhancer from the 5'-flanking region of the adipocyte P2 (aP2) gene that directs high-level adipocyte-specific gene expression in both cultured cells and transgenic mice. The key regulator of this enhancer is a cell type-restricted nuclear factor termed ARF6. Target sequences for ARF6 in the aP2 enhancer exhibit homology to a direct repeat of hormone response elements (HREs) spaced by one nucleotide; this motif (DR-1) has been demonstrated previously to be the preferred binding site for heterodimers of the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). We have cloned a novel member of the peroxisome proliferator-activated receptor family designated mPPAR gamma 2, and we demonstrate that a heterodimeric complex of mPPAR gamma 2 and RXR alpha constitute a functional ARF6 complex. Expression of mPPAR gamma 2 is induced very early during the differentiation of several cultured adipocyte cell lines and is strikingly adipose-specific in vivo. mPPAR gamma 2 and RXR alpha form heterodimers on ARF6-binding sites in vitro, and antiserum to RXR alpha specifically inhibits ARF6 activity in adipocyte nuclear extracts. Moreover, forced expression of mPPAR gamma 2 and RXR alpha activates the adipocyte-specific aP2 enhancer in cultured fibroblasts, and this activation is potentiated by peroxisome proliferators, fatty acids, and 9-cis retinoic acid. These results identify mPPAR gamma 2 as the first adipocyte-specific transcription factor and suggest mechanisms whereby fatty acids, peroxisome proliferators, 9-cis retinoic acid, and other lipids may regulate adipocyte gene expression and differentiation.
Publication
Journal: Nature Genetics
October/29/2000
Abstract
Genetic association studies are viewed as problematic and plagued by irreproducibility. Many associations have been reported for type 2 diabetes, but none have been confirmed in multiple samples and with comprehensive controls. We evaluated 16 published genetic associations to type 2 diabetes and related sub-phenotypes using a family-based design to control for population stratification, and replication samples to increase power. We were able to confirm only one association, that of the common Pro12Ala polymorphism in peroxisome proliferator-activated receptor-gamma(PPARgamma) with type 2 diabetes. By analysing over 3,000 individuals, we found a modest (1.25-fold) but significant (P=0.002) increase in diabetes risk associated with the more common proline allele (85% frequency). Moreover, our results resolve a controversy about common variation in PPARgamma. An initial study found a threefold effect, but four of five subsequent publications failed to confirm the association. All six studies are consistent with the odds ratio we describe. The data implicate inherited variation in PPARgamma in the pathogenesis of type 2 diabetes. Because the risk allele occurs at such high frequency, its modest effect translates into a large population attributable risk-influencing as much as 25% of type 2 diabetes in the general population.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/26/1997
Abstract
Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-Delta12, 14-prostaglandin J2 have been shown to bind to PPARgamma, it has remained unclear whether other activators mediate their effects through direct interactions with the PPARs or via indirect mechanisms. Here, we describe a novel fibrate, designated GW2331, that is a high-affinity ligand for both PPARalpha and PPARgamma. Using GW2331 as a radioligand in competition binding assays, we show that certain mono- and polyunsaturated fatty acids bind directly to PPARalpha and PPARgamma at physiological concentrations, and that the eicosanoids 8(S)-hydroxyeicosatetraenoic acid and 15-deoxy-Delta12,14-prostaglandin J2 can function as subtype-selective ligands for PPARalpha and PPARgamma, respectively. These data provide evidence that PPARs serve as physiological sensors of lipid levels and suggest a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis.
Publication
Journal: Nature
October/17/2005
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has essential roles in adipogenesis and glucose homeostasis, and is a molecular target of insulin-sensitizing drugs. Although the ability of PPAR-gamma agonists to antagonize inflammatory responses by transrepression of nuclear factor kappa B (NF-kappaB) target genes is linked to antidiabetic and antiatherogenic actions, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPAR-gamma represses the transcriptional activation of inflammatory response genes in mouse macrophages. The initial step of this pathway involves ligand-dependent SUMOylation of the PPAR-gamma ligand-binding domain, which targets PPAR-gamma to nuclear receptor corepressor (NCoR)-histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-kappaB target genes that regulate immunity and homeostasis.
Publication
Journal: Nature
September/30/1998
Abstract
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-dependent transcription factor that is important in adipocyte differentiation and glucose homeostasis and which depends on interactions with co-activators, including steroid receptor co-activating factor-1 (SRC-1). Here we present the X-ray crystal structure of the human apo-PPAR-gamma ligand-binding domain (LBD), at 2.2 A resolution; this structure reveals a large binding pocket, which may explain the diversity of ligands for PPAR-gamma. We also describe the ternary complex containing the PPAR-gamma LBD, the antidiabetic ligand rosiglitazone (BRL49653), and 88 amino acids of human SRC-1 at 2.3 A resolution. Glutamate and lysine residues that are highly conserved in LBDs of nuclear receptors form a 'charge clamp' that contacts backbone atoms of the LXXLL helices of SRC-1. These results, together with the observation that two consecutive LXXLL motifs of SRC-1 make identical contacts with both subunits of a PPAR-gamma homodimer, suggest a general mechanism for the assembly of nuclear receptors with co-activators.
Publication
Journal: Journal of Biological Chemistry
April/28/2010
Abstract
The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis in these cells but also a norepinephrine-augmentable UCP1 gene expression in a significant subset of the cells, providing these cells with a genuine thermogenic capacity. However, although functional thermogenic genes are expressed, the cells are devoid of transcripts for the novel transcription factors now associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells are not proliferating classic brown adipocytes (adipomyocytes), and these cells therefore constitute a subset of adipocytes ("brite" adipocytes) with a developmental origin and molecular characteristics distinguishing them as a separate class of cells.
Publication
Journal: Nature Genetics
May/24/2004
Publication
Journal: Cell
September/1/2008
Abstract
The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.
Publication
Journal: Cell
May/20/1998
Abstract
The formation of foam cells from macrophages in the arterial wall is characterized by dramatic changes in lipid metabolism, including increased expression of scavenger receptors and the uptake of oxidized low-density lipoprotein (oxLDL). We demonstrate here that the nuclear receptor PPARgamma is induced in human monocytes following exposure to oxLDL and is expressed at high levels in the foam cells of atherosclerotic lesions. Ligand activation of the PPARgamma:RXRalpha heterodimer in myelomonocytic cell lines induces changes characteristic of monocytic differentiation and promotes uptake of oxLDL through transcriptional induction of the scavenger receptor CD36. These results reveal a novel signaling pathway controlling differentiation and lipid metabolism in monocytic cells, and suggest that endogenous PPARgamma ligands may be important regulators of gene expression during atherogenesis.
load more...