nfkb1 - nuclear factor of kappa light polypeptide enhancer in B-cells
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(4K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Science
August/15/1999
Abstract
Apoptosis is implicated in the generation and resolution of inflammation in response to bacterial pathogens. All bacterial pathogens produce lipoproteins (BLPs), which trigger the innate immune response. BLPs were found to induce apoptosis in THP-1 monocytic cells through human Toll-like receptor-2 (hTLR2). BLPs also initiated apoptosis in an epithelial cell line transfected with hTLR2. In addition, BLPs stimulated nuclear factor-kappaB, a transcriptional activator of multiple host defense genes, and activated the respiratory burst through hTLR2. Thus, hTLR2 is a molecular link between microbial products, apoptosis, and host defense mechanisms.
Pulse
Views:
9
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
November/29/2004
Abstract
Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt phenotype was seen upon muscle-specific inhibition of NF-kappaB through expression of IkappaBalpha superrepressor (MISR). Muscle loss was due to accelerated protein breakdown through ubiquitin-dependent proteolysis. Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice. Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy. Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
April/21/1993
Abstract
The eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) participates in many parts of the genetic program mediating T lymphocyte activation and growth. Nuclear expression of NF-kappa B occurs after its induced dissociation from its cytoplasmic inhibitor I kappa B alpha. Phorbol ester and tumor necrosis factor-alpha induction of nuclear NF-kappa B is associated with both the degradation of performed I kappa B alpha and the activation of I kappa B alpha gene expression. Transfection studies indicate that the I kappa B alpha gene is specifically induced by the 65-kilodalton transactivating subunit of NF-kappa B. Association of the newly synthesized I kappa B alpha with p65 restores intracellular inhibition of NF-kappa B DNA binding activity and prolongs the survival of this labile inhibitor. Together, these results show that NF-kappa B controls the expression of I kappa B alpha by means of an inducible autoregulatory pathway.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature
June/9/2009
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma in adulthood, comprises multiple biologically and clinically distinct subtypes including germinal centre B-cell-like (GCB) and activated B-cell-like (ABC) DLBCL. Gene expression profile studies have shown that its most aggressive subtype, ABC-DLBCL, is associated with constitutive activation of the NF-kappaB transcription complex. However, except for a small fraction of cases, it remains unclear whether NF-kappaB activation in these tumours represents an intrinsic program of the tumour cell of origin or a pathogenetic event. Here we show that >50% of ABC-DLBCL and a smaller fraction of GCB-DLBCL carry somatic mutations in multiple genes, including negative (TNFAIP3, also called A20) and positive (CARD11, TRAF2, TRAF5, MAP3K7 (TAK1) and TNFRSF11A (RANK)) regulators of NF-kappaB. Of these, the A20 gene, which encodes a ubiquitin-modifying enzyme involved in termination of NF-kappaB responses, is most commonly affected, with approximately 30% of patients displaying biallelic inactivation by mutations and/or deletions. When reintroduced in cell lines carrying biallelic inactivation of the gene, A20 induced apoptosis and cell growth arrest, indicating a tumour suppressor role. Less frequently, missense mutations of TRAF2 and CARD11 produce molecules with significantly enhanced ability to activate NF-kappaB. Thus, our results demonstrate that NF-kappaB activation in DLBCL is caused by genetic lesions affecting multiple genes, the loss or activation of which may promote lymphomagenesis by leading to abnormally prolonged NF-kappaB responses.
Publication
Journal: Cell host & microbe
November/25/2008
Abstract
Human immunodeficiency virus (HIV)-1 depends on the host cell machinery to support its replication. To discover cellular factors associated with HIV-1 replication, we conducted a genome-scale siRNA screen, revealing more than 311 host factors, including 267 that were not previously linked to HIV. Surprisingly, there was little overlap between these genes and the HIV dependency factors described recently. However, an analysis of the genes identified in both screens revealed overlaps in several of the associated pathways or protein complexes, including the SP1/mediator complex and the NF-kappaB signaling pathway. cDNAs for a subset of the identified genes were used to rescue HIV replication following knockdown of the cellular mRNA providing strong evidence that the following six genes are previously uncharacterized host factors for HIV: AKT1, PRKAA1, CD97, NEIL3, BMP2K, and SERPINB6. This study highlights both the power and shortcomings of large scale loss-of-function screens in discovering host-pathogen interactions.
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cancer Cell
October/3/2007
Abstract
Activation of NF-kappaB has been noted in many tumor types, however only rarely has this been linked to an underlying genetic mutation. An integrated analysis of high-density oligonucleotide array CGH and gene expression profiling data from 155 multiple myeloma samples identified a promiscuous array of abnormalities contributing to the dysregulation of NF-kappaB in approximately 20% of patients. We report mutations in ten genes causing the inactivation of TRAF2, TRAF3, CYLD, cIAP1/cIAP2 and activation of NFKB1, NFKB2, CD40, LTBR, TACI, and NIK that result primarily in constitutive activation of the noncanonical NF-kappaB pathway, with the single most common abnormality being inactivation of TRAF3. These results highlight the critical importance of the NF-kappaB pathway in the pathogenesis of multiple myeloma.
Pulse
Views:
4
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
February/28/1995
Abstract
NF-kappa B, a heterodimeric transcription factor composed of p50 and p65 subunits, can be activated in many cell types and is thought to regulate a wide variety of genes involved in immune function and development. Mice lacking the p50 subunit of NF-kappa B show no developmental abnormalities, but exhibit multifocal defects in immune responses involving B lymphocytes and nonspecific responses to infection. B cells do not proliferate in response to bacterial lipopolysaccharide and are defective in basal and specific antibody production. Mice lacking p50 are unable effectively to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae, but are more resistant to infection with murine encephalomyocarditis virus. These data support the role of NF-kappa B as a vital transcription factor for both specific and nonspecific immune responses, but do not indicate a developmental role for the factor.
Publication
Journal: Genes and Development
April/1/1999
Abstract
Ubiquitin-mediated proteolysis has a central role in controlling the intracellular levels of several important regulatory molecules such as cyclins, CKIs, p53, and IkappaBalpha. Many diverse proinflammatory signals lead to the specific phosphorylation and subsequent ubiquitin-mediated destruction of the NF-kappaB inhibitor protein IkappaBalpha. Substrate specificity in ubiquitination reactions is, in large part, mediated by the specific association of the E3-ubiquitin ligases with their substrates. One class of E3 ligases is defined by the recently described SCF complexes, the archetype of which was first described in budding yeast and contains Skp1, Cdc53, and the F-box protein Cdc4. These complexes recognize their substrates through modular F-box proteins in a phosphorylation-dependent manner. Here we describe a biochemical dissection of a novel mammalian SCF complex, SCFbeta-TRCP, that specifically recognizes a 19-amino-acid destruction motif in IkappaBalpha (residues 21-41) in a phosphorylation-dependent manner. This SCF complex also recognizes a conserved destruction motif in beta-catenin, a protein with levels also regulated by phosphorylation-dependent ubiquitination. Endogenous IkappaBalpha-ubiquitin ligase activity cofractionates with SCFbeta-TRCP. Furthermore, recombinant SCFbeta-TRCP assembled in mammalian cells contains phospho-IkappaBalpha-specific ubiquitin ligase activity. Our results suggest that an SCFbeta-TRCP complex functions in multiple transcriptional programs by activating the NF-kappaB pathway and inhibiting the beta-catenin pathway.
Publication
Journal: Nature Cell Biology
April/5/2004
Abstract
Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-alpha triggers a signalling cascade, converging on the activation of the transcription factor NF-kappa B, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-alpha/NF-kappa B pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-alpha/NF-kappa B pathway and is generally applicable to other pathways relevant to human disease.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
October/10/1990
Abstract
The major determinant in the transcriptional control of class I genes of the major histocompatibility complex is an enhancer sequence located around -170 from the transcription start site, which binds a factor named KBF1. We have isolated a complementary cDNA coding for KBF1 and identified the DNA binding and dimerization domain of the protein. Because KBF1 and the transcription factor NF-kappa B bind to similar sequences, we investigated the relationship between these two molecules. It appeared that KBF1 is, by all criteria used, identical to the 50 kd DNA binding subunit of NF-kappa B. KBF1 (and therefore p50) also displays extensive amino acid sequence homology with the v-rel oncogene and the Drosophila maternal morphogen dorsal. In vitro experiments suggest functional homologies between KBF1 and v-rel.
Publication
Journal: Molecular Cell
May/23/2002
Abstract
Homodimers of the NF-kappa B p50 subunit are transcriptionally repressive in cells, whereas they can promote transcription in vitro, suggesting that their endogenous effects are mediated by association with other factors. We now demonstrate that transcriptionally inactive nuclear NF-kappaB in resting cells consists of homodimers of either p65 or p50 complexed with the histone deacetylase HDAC-1. Only the p50-HDAC-1 complexes bind to DNA and suppress NF-kappa B-dependent gene expression in unstimulated cells. Appropriate stimulation causes nuclear localization of NF-kappa B complexes containing phosphorylated p65 that associates with CBP and displaces the p50-HDAC-1 complexes. Our results demonstrate that phosphorylation of p65 determines whether it associates with either CBP or HDAC-1, ensuring that only p65 entering the nucleus from cytoplasmic NF-kappa B:Ikappa B complexes can activate transcription.
Publication
Journal: Cell
October/10/1990
Abstract
The DNA binding subunit of the transcription factor NF-kappa B, p50, has been cloned. p50 appears to be synthesized as a larger protein that is then processed to its functional size. Sequence analysis reveals remarkable homology for over 300 amino acids at the amino-terminal end to the oncogene v-rel, its cellular homolog c-rel, and the Drosophila maternal effect gene dorsal. This establishes NF-kappa B as a member of the rel family of proteins, all of which display nuclear-cytosolic translocation. Protein sequence from the p65 polypeptide has established that it is not encoded in the same mRNA as p50. However, p65 appears homologous to c-rel, suggesting that c-rel may form heterodimers with p50 and rel may include a homodimerization motif.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature
May/5/2008
Abstract
Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-alpha/beta activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-gamma and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3-RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world's population, and that siRNAs might induce unanticipated vascular or immune effects.
Publication
Journal: Cell
April/5/2009
Abstract
Activation of nuclear factor-kappaB (NF-kappaB), a key mediator of inducible transcription in immunity, requires binding of NF-kappaB essential modulator (NEMO) to ubiquitinated substrates. Here, we report that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO selectively binds linear (head-to-tail) ubiquitin chains. Crystal structures of the UBAN motif revealed a parallel coiled-coil dimer that formed a heterotetrameric complex with two linear diubiquitin molecules. The UBAN dimer contacted all four ubiquitin moieties, and the integrity of each binding site was required for efficient NF-kappaB activation. Binding occurred via a surface on the proximal ubiquitin moiety and the canonical Ile44 surface on the distal one, thereby providing specificity for linear chain recognition. Residues of NEMO involved in binding linear ubiquitin chains are required for NF-kappaB activation by TNF-alpha and other agonists, providing an explanation for the detrimental effect of NEMO mutations in patients suffering from X-linked ectodermal dysplasia and immunodeficiency.
Publication
Journal: Molecular Cell
October/18/2004
Abstract
The activation of NF-kappaB and IKK requires an upstream kinase complex consisting of TAK1 and adaptor proteins such as TAB1, TAB2, or TAB3. TAK1 is in turn activated by TRAF6, a RING domain ubiquitin ligase that facilitates the synthesis of lysine 63-linked polyubiquitin chains. Here we present evidence that TAB2 and TAB3 are receptors that bind preferentially to lysine 63-linked polyubiquitin chains through a highly conserved zinc finger (ZnF) domain. Mutations of the ZnF domain abolish the ability of TAB2 and TAB3 to bind polyubiquitin chains, as well as their ability to activate TAK1 and IKK. Significantly, replacement of the ZnF domain with a heterologous ubiquitin binding domain restored the ability of TAB2 and TAB3 to activate TAK1 and IKK. We also show that TAB2 binds to polyubiquitinated RIP following TNFalpha stimulation. These results indicate that polyubiquitin binding domains represent a new class of signaling domains that regulate protein kinase activity through a nonproteolytic mechanism.
Publication
Journal: Nature
August/10/2010
Abstract
Cells operate in dynamic environments using extraordinary communication capabilities that emerge from the interactions of genetic circuitry. The mammalian immune response is a striking example of the coordination of different cell types. Cell-to-cell communication is primarily mediated by signalling molecules that form spatiotemporal concentration gradients, requiring cells to respond to a wide range of signal intensities. Here we use high-throughput microfluidic cell culture and fluorescence microscopy, quantitative gene expression analysis and mathematical modelling to investigate how single mammalian cells respond to different concentrations of the signalling molecule tumour-necrosis factor (TNF)-alpha, and relay information to the gene expression programs by means of the transcription factor nuclear factor (NF)-kappaB. We measured NF-kappaB activity in thousands of live cells under TNF-alpha doses covering four orders of magnitude. We find, in contrast to population-level studies with bulk assays, that the activation is heterogeneous and is a digital process at the single-cell level with fewer cells responding at lower doses. Cells also encode a subtle set of analogue parameters to modulate the outcome; these parameters include NF-kappaB peak intensity, response time and number of oscillations. We developed a stochastic mathematical model that reproduces both the digital and analogue dynamics as well as most gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-alpha-induced NF-kappaB signalling in various types of cells. These results highlight the value of high-throughput quantitative measurements with single-cell resolution in understanding how biological systems operate.
Publication
Journal: Developmental Cell
May/5/2010
Abstract
Three distinct cell types are present within the 64-cell stage mouse blastocyst. We have investigated cellular development up to this stage using single-cell expression analysis of more than 500 cells. The 48 genes analyzed were selected in part based on a whole-embryo analysis of more than 800 transcription factors. We show that in the morula, blastomeres coexpress transcription factors specific to different lineages, but by the 64-cell stage three cell types can be clearly distinguished according to their quantitative expression profiles. We identify Id2 and Sox2 as the earliest markers of outer and inner cells, respectively. This is followed by an inverse correlation in expression for the receptor-ligand pair Fgfr2/Fgf4 in the early inner cell mass. Position and signaling events appear to precede the maturation of the transcriptional program. These results illustrate the power of single-cell expression analysis to provide insight into developmental mechanisms. The technique should be widely applicable to other biological systems.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cold Spring Harbor perspectives in biology
September/27/2010
Abstract
NF-kappaB transcription factors have been suspected to be involved in cancer development since their discovery because of their kinship with the v-Rel oncogene product. Subsequent work led to identification of oncogenic mutations that result in NF-kappaB activation in lymphoid malignancies, but most of these mutations affect upstream components of NF-kappaB signaling pathways, rather than NF-kappaB family members themselves. NF-kappaB activation has also been observed in many solid tumors, but so far no oncogenic mutations responsible for NF-kappaB activation in carcinomas have been identified. In such cancers, NF-kappaB activation is a result of underlying inflammation or the consequence of formation of an inflammatory microenvironment during malignant progression. Most importantly, through its ability to up-regulate the expression of tumor promoting cytokines, such as IL-6 or TNF-alpha, and survival genes, such as Bcl-X(L), NF-kappaB provides a critical link between inflammation and cancer.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cancer Cell
August/2/2009
Abstract
The increased motility and invasiveness of tumor cells are reminiscent of epithelial-mesenchymal transition (EMT), which occurs during embryonic development, wound healing, and metastasis. In this study, we found that Snail is stabilized by the inflammatory cytokine TNFalpha through the activation of the NF-kappaB pathway. We demonstrated that NF-kappaB is required for the induction of COP9 signalosome 2 (CSN2), which, in turn, blocks the ubiquitination and degradation of Snail. Furthermore, we showed that the expression of Snail correlated with the activation of NF-kappaB in cancer cell lines and metastatic tumor samples. Knockdown of Snail expression inhibited cell migration and invasion induced by inflammatory cytokines and suppressed inflammation-mediated breast cancer metastasis. Our study provides a plausible mechanism for inflammation-induced metastasis.
Publication
Journal: Nature Reviews Gastroenterology and Hepatology
May/18/2011
Abstract
Hepatic cirrhosis and hepatocellular carcinoma (HCC) are the most common causes of death in patients with chronic liver disease. Chronic liver injury of virtually any etiology triggers inflammatory and wound-healing responses that in the long run promote the development of hepatic fibrosis and HCC. Here, we review the role of the transcription factor nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death, in the development of hepatocellular injury, liver fibrosis and HCC, with a particular focus on the role of NF-κB in different cellular compartments of the liver. We propose that NF-κB acts as a central link between hepatic injury, fibrosis and HCC, and that it may represent a target for the prevention or treatment of liver fibrosis and HCC. However, NF-κB acts as a two-edged sword and inhibition of NF-κB may not only exert beneficial effects but also negatively impact hepatocyte viability, especially when NF-κB inhibition is pronounced. Finding appropriate targets or identifying drugs that either exert only a moderate effect on NF-κB activity or that can be specifically delivered to nonparenchymal cells will be essential to avoid the increase in liver injury associated with complete NF-κB blockade in hepatocytes.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Genes and Development
February/2/1998
Abstract
NF-kappaB is a family of related, dimeric transcription factors that are readily activated in cells by signals associated with stress or pathogens. These factors are critical to host defense, as demonstrated previously with mice deficient in individual subunits of NF-kappaB. We have generated mice deficient in both the p50 and p52 subunits of NF-kappaB to reveal critical functions that may be shared by these two highly homologous proteins. We now demonstrate that unlike the respective single knockout mice, the p50/p52 double knockout mice fail to generate mature osteoclasts and B cells, apparently because of defects that track with these lineages in adoptive transfer experiments. Furthermore, these mice present markedly impaired thymic and splenic architectures and impaired macrophage functions. The blocks in osteoclast and B-cell maturation were unexpected. Lack of mature osteoclasts caused severe osteopetrosis, a family of diseases characterized by impaired osteoclastic bone resorption. These findings now establish critical roles for NF-kappaB in development and expand its repertoire of roles in the physiology of differentiated hematopoietic cells.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
March/21/2001
Abstract
Tpl2 knockout mice produce low levels of TNF-alpha when exposed to lipopolysaccharide (LPS) and they are resistant to LPS/D-Galactosamine-induced pathology. LPS stimulation of peritoneal macrophages from these mice did not activate MEK1, ERK1, and ERK2 but did activate JNK, p38 MAPK, and NF-kappaB. The block in ERK1 and ERK2 activation was causally linked to the defect in TNF-alpha induction by experiments showing that normal murine macrophages treated with the MEK inhibitor PD98059 exhibit a similar defect. Deletion of the AU-rich motif in the TNF-alpha mRNA minimized the effect of Tpl2 inactivation on the induction of TNF-alpha. Subcellular fractionation of LPS-stimulated macrophages revealed that LPS signals transduced by Tpl2 specifically promote the transport of TNF-alpha mRNA from the nucleus to the cytoplasm.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: EMBO Journal
May/8/2003
Abstract
Nuclear factor kappaB (NF-kappaB) is one of the key regulators of transcription of a variety of genes involved in immune and inflammatory responses. NF-kappaB activity has long been thought to be regulated mainly by IkappaB family members, which keep the transcription factor complex in an inactive form in the cytoplasm by masking the nuclear localization signal. Nowadays, the importance of additional mechanisms controlling the nuclear transcription potential of NF-kappaB is generally accepted. We show that the mitogen-activated protein kinase inhibitors SB203580 and PD98059 or U0126, as well as a potent mitogen- and stress- activated protein kinase-1 (MSK1) inhibitor H89, counteract tumor necrosis factor (TNF)-mediated stimulation of p65 transactivation capacity. Mutational analysis of p65 revealed Ser276 as a target for phosphorylation and transactivation in response to TNF. Moreover, we identified MSK1 as a nuclear kinase for p65, since MSK1 associates with p65 in a stimulus-dependent way and phosphorylates p65 at Ser276. This effect represents, together with phosphorylation of nucleosome components such as histone H3, an essential step leading to selective transcriptional activation of NF-kappaB-dependent gene expression.
Publication
Journal: Cell
January/19/1999
Abstract
The inhibitory protein, IkappaBalpha, sequesters the transcription factor, NF-kappaB, as an inactive complex in the cytoplasm. The structure of the IkappaBalpha ankyrin repeat domain, bound to a partially truncated NF-kappaB heterodimer (p50/ p65), has been determined by X-ray crystallography at 2.7 A resolution. It shows a stack of six IkappaBalpha ankyrin repeats facing the C-terminal domains of the NF-kappaB Rel homology regions. Contacts occur in discontinuous patches, suggesting a combinatorial quality for ankyrin repeat specificity. The first two repeats cover an alpha helically ordered segment containing the p65 nuclear localization signal. The position of the sixth ankyrin repeat shows that full-length IkappaBalpha will occlude the NF-kappaB DNA-binding cleft. The orientation of IkappaBalpha in the complex places its N- and C-terminal regions in appropriate locations for their known regulatory functions.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
load more...