ms4a1 - membrane spanning 4-domains A1
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(180)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Immunity
July/6/2008
Abstract
B cells mediate multiple functions that influence immune and inflammatory responses. In this study, T cell-mediated inflammation was exaggerated in CD19-deficient (Cd19(-/-)) mice and wild-type mice depleted of CD20(+) B cells, whereas inflammation was substantially reduced in mice with hyperactive B cells as a result of CD19 overexpression (hCD19Tg). These inflammatory responses were negatively regulated by a unique CD1d(hi)CD5(+) B cell subset that was absent in Cd19(-/-) mice, represented only 1%-2% of spleen B220(+) cells in wild-type mice, but was expanded to approximately 10% of spleen B220(+) cells in hCD19Tg mice. Adoptive transfer of these CD1d(hi)CD5(+) B cells normalized inflammation in wild-type mice depleted of CD20(+) B cells and in Cd19(-/-) mice. Remarkably, IL-10 production was restricted to this CD1d(hi)CD5(+) B cell subset, with IL-10 production diminished in Cd19(-/-) mice, yet increased in hCD19Tg mice. Thereby, CD1d(hi)CD5(+) B cells represent a unique subset of potent regulatory B cells.
Publication
Journal: Journal of Experimental Medicine
September/2/2004
Abstract
Anti-CD20 antibody immunotherapy effectively treats non-Hodgkin's lymphoma and autoimmune disease. However, the cellular and molecular pathways for B cell depletion remain undefined because human mechanistic studies are limited. Proposed mechanisms include antibody-, effector cell-, and complement-dependent cytotoxicity, the disruption of CD20 signaling pathways, and the induction of apoptosis. To identify the mechanisms for B cell depletion in vivo, a new mouse model for anti-CD20 immunotherapy was developed using a panel of twelve mouse anti-mouse CD20 monoclonal antibodies representing all four immunoglobulin G isotypes. Anti-CD20 antibodies rapidly depleted the vast majority of circulating and tissue B cells in an isotype-restricted manner that was completely dependent on effector cell Fc receptor expression. B cell depletion used both FcgammaRI- and FcgammaRIII-dependent pathways, whereas B cells were not eliminated in FcR common gamma chain-deficient mice. Monocytes were the dominant effector cells for B cell depletion, with no demonstrable role for T or natural killer cells. Although most anti-CD20 antibodies activated complement in vitro, B cell depletion was completely effective in mice with genetic deficiencies in C3, C4, or C1q complement components. That the innate monocyte network depletes B cells through FcgammaR-dependent pathways during anti-CD20 immunotherapy has important clinical implications for anti-CD20 and other antibody-based therapies.
Publication
Journal: PLoS ONE
November/9/2009
Abstract
BACKGROUND
Tumor-infiltrating T cells are associated with survival in epithelial ovarian cancer (EOC), but their functional status is poorly understood, especially relative to the different risk categories and histological subtypes of EOC.
RESULTS
Tissue microarrays containing high-grade serous, endometrioid, mucinous and clear cell tumors were analyzed immunohistochemically for the presence of lymphocytes, dendritic cells, neutrophils, macrophages, MHC class I and II, and various markers of activation and inflammation. In high-grade serous tumors from optimally debulked patients, positive associations were seen between intraepithelial cells expressing CD3, CD4, CD8, CD45RO, CD25, TIA-1, Granzyme B, FoxP3, CD20, and CD68, as well as expression of MHC class I and II by tumor cells. Disease-specific survival was positively associated with the markers CD8, CD3, FoxP3, TIA-1, CD20, MHC class I and class II. In other histological subtypes, immune infiltrates were less prevalent, and the only markers associated with survival were MHC class II (positive association in endometrioid cases) and myeloperoxidase (negative association in clear cell cases).
CONCLUSIONS
Host immune responses to EOC vary widely according to histological subtype and the extent of residual disease. TIA-1, FoxP3 and CD20 emerge as new positive prognostic factors in high-grade serous EOC from optimally debulked patients.
Publication
Journal: Annals of Neurology
September/23/2010
Abstract
OBJECTIVE
Clinical studies indicate that anti-CD20 B-cell depletion may be an effective multiple sclerosis (MS) therapy. We investigated mechanisms of anti-CD20-mediated immune modulation using 2 paradigms of experimental autoimmune encephalomyelitis (EAE).
METHODS
Murine EAE was induced by recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or MOG peptide (p)35-55, which does not require B cells.
RESULTS
In EAE induced by rMOG, B cells became activated and, when serving as antigen-presenting cells (APCs), promoted differentiation of proinflammatory MOG-specific Th1 and Th17 cells. B-cell depletion prevented or reversed established rMOG-induced EAE, which was associated with less central nervous system (CNS) inflammation, elimination of meningeal B cells, and reduction of MOG-specific Th1 and Th17 cells. In contrast, in MOG p35-55-induced EAE, B cells did not become activated or efficiently polarize proinflammatory MOG-specific T cells, similar to naive B cells. In this setting, anti-CD20 treatment exacerbated EAE, and did not impede development of Th1 or Th17 cells. Irrespective of the EAE model used, B-cell depletion reduced the frequency of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg), and increased the proinflammatory polarizing capacity of remaining myeloid APCs.
CONCLUSIONS
Our study highlights distinct roles for B cells in CNS autoimmunity. Clinical benefit from anti-CD20 treatment may relate to inhibition of proinflammatory B cell APC function. In certain clinical settings, however, elimination of unactivated B cells, which participate in regulation of T cells and other APC, may be undesirable. Differences in immune responses to MOG protein and peptide may be important considerations when choosing an EAE model for testing novel B cell-targeting agents for MS.
Publication
Journal: Journal of Clinical Investigation
January/19/2010
Abstract
CD20 was the first B cell differentiation antigen identified, and CD20-specific mAbs are commonly used for the treatment of B cell malignancies and autoantibody-mediated autoimmune diseases. Despite this the role of CD20 in human B cell physiology has remained elusive. We describe here a juvenile patient with CD20 deficiency due to a homozygous mutation in a splice junction of the CD20 gene (also known as MS4A1) that results in "cryptic" splicing and nonfunctional mRNA species. Analysis of this patient has led us to conclude that CD20 has a central role in the generation of T cell-independent (TI) antibody responses. Key evidence to support this conclusion was provided by the observation that although antigen-independent B cells developed normally in the absence of CD20 expression, antibody formation, particularly after vaccination with TI antigens, was strongly impaired in the patient. Consistent with this, TI antipolysaccharide B cell responses were severely impeded in CD20-deficient mice. Our study therefore identifies what we believe to be a novel type of humoral immunodeficiency caused by CD20 deficiency and characterized by normal development of antigen-independent B cells, along with a reduced capacity to mount proper antibody responses.
Publication
Journal: Blood
July/8/2010
Abstract
Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.
Publication
Journal: Blood
December/10/1987
Abstract
A panel of B lymphoid-reactive monoclonal antibodies was used to analyze the phenotypic changes that accompany B lymphocyte development in normal human bone marrow. The B lymphoid cells were identified using light scattering and the expression of CD19 on a flow cytometer. Quantitative three-color immunofluorescence was then used to correlate other cell surface antigens on these cells identified as B lymphoid in normal marrow. CD10 and CD20 identified almost exclusive populations and provided a convenient means of discriminating between the less and more mature B lineage cells. The CD10+ cells could be further subdivided using CD34. The population of CD19+, CD10+, CD34+ cells comprised only 0.6% of marrow cells, but these contained the majority of terminal deoxynucleotidyl transferase (TdT+) cells. In the assessment of class II antigens, HLA-DR was expressed on all B lineage cells whereas HLA-DP preceded HLA-DQ in appearance during the developmental process. Among the later antigens expressed on B lineage cells, cell surface IgM, CD20, and HLA-DQ were expressed at essentially the same time. Cell surface CD10 was lost at the time when CD21 and CD22 were acquired on the cell surface. These data illustrate that multiparameter flow cytometry can be used to define a continuous progression of stages of B lymphocyte development based on cell surface antigen expression even though these cells represent a minor fraction of normal marrow cells.
Publication
Journal: International Immunology
August/1/2004
Abstract
CD20 plays a role in human B cell proliferation and is an effective target for immunotherapy. In this study, mouse CD20 expression and biochemistry were assessed for the first time using a new panel of CD20-specific mAb, with CD20 function assessed using CD20-deficient (CD20(-/-)) mice. CD20 expression was B cell restricted and was initiated during late pre-B cell development. The frequency and density of CD20 expression increased during B cell maturation in the bone marrow, with a subpopulation of transitional IgM(hi) B cells expressing higher CD20 levels than the majority of mature recirculating B cells. Transitional T1 B cells in the spleen also expressed high CD20 levels, providing a useful new marker for this B cell subset. In CD20(-/-) mice, immature and mature B cell IgM expression was approximately 20-30% lower relative to B cells from wild-type littermates. In addition, CD19-induced intracellular calcium responses were significantly reduced in CD20(-/-) B cells, with a less dramatic effect on IgM-induced responses. These results reveal a role for CD20 in transmembrane Ca(2+) movement in mouse primary B cells that complements previous results obtained using human CD20 cDNA-transfected cell lines. Otherwise, B cell development, tissue localization, signal transduction, proliferation, T cell-dependent antibody responses and affinity maturation were normal in CD20(-/-) mice. Thus, mouse and human CD20 share similar patterns of expression and function. These studies thereby provide an animal model for studying CD20 function in vivo and the molecular mechanisms that influence anti-CD20 immunotherapy.
Publication
Journal: Blood
April/20/2003
Abstract
Despite the clinical success of anti-CD20 monoclonal antibody (mAb) in the treatment of lymphoma, there remains considerable uncertainty about its mechanism of action. Here we show that the ability of mAbs to translocate CD20 into low-density, detergent-insoluble membrane rafts appears to control how effectively they mediate complement lysis of lymphoma cells. In vitro studies using a panel of anti-B-cell mAbs revealed that the anti-CD20 mAbs, with one exception (B1), are unusually effective at recruiting human complement. Differences in complement recruitment could not be explained by the level of mAb binding or isotype but did correlate with the redistribution of CD20 in the cell membrane following mAb ligation. Membrane fractionation confirmed that B1, unlike 1F5 and rituximab, was unable to translocate CD20 into lipid rafts. In addition, we were able to drive B1 and a range of other anti-B-cell mAbs into a detergent-insoluble fraction of the cell by hyper-cross-linking with an F(ab')(2) anti-Ig Ab, a treatment that also conferred the ability to activate lytic complement. Thus, we have shown that an important mAb effector function appears to be controlled by movement of the target molecule into membrane rafts, either because a raft location favors complement activation by mAbs or because rafts are more sensitive to complement penetration.
Publication
Journal: Journal of Cell Biology
June/28/1993
Abstract
CD20 is a plasma membrane phosphoprotein expressed exclusively by B lymphocytes. mAb binding to CD20 alters cell cycle progression and differentiation, indicating that CD20 plays an essential role in B lymphocyte function. Whole-cell patch clamp and fluorescence microscopy measurements of plasma membrane ionic conductance and cytosolic-free Ca2+ activity, respectively, were used to directly examine CD20 function. Transfection of human T and mouse pre-B lymphoblastoid cell lines with CD20 cDNA and subsequent stable expression of CD20 specifically increased transmembrane Ca2+ conductance. Transfection of CD20 cDNA and subsequent expression of CD20 in nonlymphoid cells (human K562 erythroleukemia cells and mouse NIH-3T3 fibroblasts) also induced the expression of an identical transmembrane Ca2+ conductance. The binding of a CD20-specific mAb to CD20+ lymphoblastoid cells also enhanced the transmembrane Ca2+ conductance. The mAb-enhanced Ca2+ currents had the same conductance characteristics as the CD20-associated Ca2+ currents in CD20 cDNA-transfected cells. C20 is structurally similar to several ion channels; each CD20 monomer possesses four membrane spanning domains, and both the amino and carboxy termini reside within the cytoplasm. Biochemical cross-linking of cell-surface molecules with subsequent immunoprecipitation analysis of CD20 suggests that CD20 may be present as a multimeric oligomer within the membrane, as occurs with several known membrane channels. Taken together, these findings indicate that CD20 directly regulates transmembrane Ca2+ conductance in B lymphocytes, and suggest that multimeric complexes of CD20 may form Ca2+ conductive ion channels in the plasma membrane of B lymphoid cells.
Publication
Journal: American Journal of Pathology
October/23/2006
Abstract
Systemic sclerosis (scleroderma) is an autoimmune disease characterized by excessive extracellular matrix deposition in the skin. A direct role for B lymphocytes in disease development or progression has remained controversial, although autoantibody production is a feature of this disease. To address this issue, skin sclerosis and autoimmunity were assessed in tight-skin mice, a genetic model of human systemic sclerosis, after circulating and tissue B-cell depletion using an anti-mouse CD20 monoclonal antibody before (day 3 after birth) and after disease development (day 56). CD20 monoclonal antibody treatment (10 to 20 microg) depleted the majority (85 to 99%) of circulating and tissue B cells in newborn and adult tight-skin mice by days 56 and 112, respectively. B-cell depletion in newborn tight-skin mice significantly suppressed (approximately 43%) the development of skin fibrosis, autoantibody production, and hypergammaglobulinemia. B-cell depletion also restored a more normal balance between Th1 and Th2 cytokine mRNA expression in the skin. By contrast, B-cell depletion did not affect skin fibrosis, hypergammaglobulinemia, and autoantibody levels in adult mice with established disease. Thereby, B-cell depletion during disease onset suppressed skin fibrosis, indicating that B cells contribute to the initiation of systemic sclerosis pathogenesis in tight-skin mice but are not required for disease maintenance.
Publication
Journal: Blood
September/26/2011
Abstract
CD20 is a cell-surface marker of normal and malignant B cells. Rituximab, a monoclonal antibody targeting CD20, has improved the treatment of malignant lymphomas. Therapeutic CD20 antibodies are classified as either type I or II based on different mechanisms of killing malignant B cells. To reveal the molecular basis of this distinction, we fine-mapped the epitopes recognized by both types. We also determined the first X-ray structure of a type II antibody by crystallizing the obinutuzumab (GA101) Fab fragment alone and in complex with a CD20 cyclopeptide. Despite recognizing an overlapping epitope, GA101 binds CD20 in a completely different orientation than type I antibodies. Moreover, the elbow angle of GA101 is almost 30° wider than in type I antibodies, potentially resulting in different spatial arrangements of 2 CD20 molecules bound to a single GA101 or rituximab molecule. Using protein tomography, different CD20 complexes were found to be associated with the 2 antibodies, and confocal microscopy showed different membrane compartmentalization of these subpopulations of the cellular CD20 pool. Our findings offer a possible molecular explanation for the different cellular responses elicited by type I and II antibodies.
Publication
Journal: Journal of Immunology
November/24/1996
Abstract
The results of previous biochemical studies indicated that a fraction of MHC class II proteins is associated with four proteins of the tetraspan family, CD37, CD53, CD81, and CD82, and possibly with other membrane components, at the surface of JY B lymphoma cells. In the present communication we used a biophysical technique, namely the flow cytometric energy transfer method, to demonstrate the proximity of these molecules at the surface of the cells. Significant energy transfer (and, therefore, proximity within the 2-10 nm range) was observed between fluorescently labeled mAbs to DR, DQ, and the tetraspan molecules CD53, CD81, and CD82. Moreover, two other B cell surface molecules, CD20 and MHC class I, were found to be close to each other and to MHC class II and the tetraspan proteins, based on the observed high energy transfer efficiencies between the relevant fluorescently labeled mAbs. The character of simultaneous energy transfer from CD20, CD53, CD81, and CD82 to DR suggests that all these molecules are in a single complex with the DR molecules (or a complex of several DR molecules) rather than that each of them is separately associated with different DR molecules. Based on these data and previous biochemical results, a model is proposed predicting that the B cell membrane contains multicomponent supramolecular complexes consisting of at least two MHC class I and at least one DR, DQ, CD20, CD53, CD81, and CD82 molecules. Closer analysis of the energy transfer efficiencies makes it possible to suggest mutual orientations of the components within the complex. Participation of other molecules, not examined in this study (CD19 and CD37), in these supramolecular structures cannot be ruled out. These large assemblies of multiple B cell surface molecules may play a role in signaling through MHC molecules and in Ag presentation to T cells.
Publication
Journal: Nature Genetics
November/8/1994
Abstract
The beta-subunit of the high-affinity IgE receptor (Fc epsilon RI-beta) on chromosome 11 is maternally linked to atopy, the state of enhanced IgE responsiveness underlying allergic asthma and rhinitis. We have identified a common variant of Fc epsilon RI-beta, lle181Leu within the 4th transmembrane domain. Leu181 shows significant association with positive IgE responses in a random patient sample. Amongst 60 unrelated nuclear families with allergic asthmatic probands, Leu181 is identified in 10 (17%), is maternally inherited in each, and shows a strong association with atopy. Our data indicate that Fc epsilon RI-beta, subject to maternal modification, may be the atopy-causing locus on chromosome 11q.
Publication
Journal: Diabetes
June/5/2017
Abstract
Type 1 diabetes (T1D) results from a T cell-mediated destruction of pancreatic β-cells following the infiltration of leukocytes (including CD8(+), CD4(+), and CD20(+) cells) into and around pancreatic islets (insulitis). Recently, we reported that two distinct patterns of insulitis occur in patients with recent-onset T1D from the U.K. and that these differ principally in the proportion of infiltrating CD20(+) B cells (designated CD20Hi and CD20Lo, respectively). We have now extended this analysis to include patients from the Network for Pancreatic Organ Donors with Diabetes (U.S.) and Diabetes Virus Detection (DiViD) study (Norway) cohorts and confirm that the two profiles of insulitis occur more widely. Moreover, we show that patients can be directly stratified according to their insulitic profile and that those receiving a diagnosis before the age of 7 years always display the CD20Hi profile. By contrast, individuals who received a diagnosis beyond the age of 13 years are uniformly defined as CD20Lo. This implies that the two forms of insulitis are differentially aggressive and that patients with a CD20Hi profile lose their β-cells at a more rapid rate. In support of this, we also find that the proportion of residual insulin-containing islets (ICIs) increases in parallel with age at the onset of T1D. Importantly, those receiving a diagnosis in, or beyond, their teenage years retain ∼40% ICIs at diagnosis, implying that a functional deficit rather than an absolute β-cell loss may be causal for disease onset in these patients. We conclude that appropriate patient stratification will be critical for correct interpretation of the outcomes of intervention therapies targeted to islet-infiltrating immune cells in T1D.
Publication
Journal: Journal of Immunology
May/29/2008
Abstract
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.
Publication
Journal: Blood
June/8/2009
Abstract
Although rituximab is a key molecular targeting drug for CD20-positive B-cell lymphomas, resistance to rituximab has recently been recognized as a considerable problem. Here, we report that a CD20-negative phenotypic change after chemotherapies with rituximab occurs in a certain number of CD20-positive B-cell lymphoma patients. For 5 years, 124 patients with B-cell malignancies were treated with rituximab-containing chemotherapies in Nagoya University Hospital. Relapse or progression was confirmed in 36 patients (29.0%), and a rebiopsy was performed in 19 patients. Of those 19, 5 (26.3%; diffuse large B-cell lymphoma [DLBCL], 3 cases; DLBCL transformed from follicular lymphoma, 2 cases) indicated CD20 protein-negative transformation. Despite salvage chemotherapies without rituximab, all 5 patients died within 1 year of the CD20-negative transformation. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that CD20 mRNA expression was significantly lower in CD20-negative cells than in CD20-positive cells obtained from the same patient. Interestingly, when CD20-negative cells were treated with 5-aza-2'-deoxycytidine in vitro, the expression of CD20 mRNA was stimulated within 3 days, resulting in the restoration of both cell surface expression of the CD20 protein and rituximab sensitivity. These findings suggest that some epigenetic mechanisms may be partly related to the down-regulation of CD20 expression after rituximab treatment.
Publication
Journal: Journal of Immunology
March/19/1985
Abstract
In man, during fetal development the B cell populations show distinct phenotypes at different tissue sites. The pre-B and B lymphocytes of the fetal liver and bone marrow express IgM and B cell markers, B1 (CD20) and BA-1 (CD24). These "early" cells are negative with a number of other reagents, anti-IgD, RFB4 (CD22), RFB6 (CD21), and RFA-2, which on the other hand recognize peripheral B cells. These peripheral B lymphocytes in the developing fetus are heterogeneous. The diffusely distributed B cells in the earliest lymph node samples, 16 to 17 wk of gestational age, and from 16 to 21 wk in the spleen, are strongly IgM+ (IgD+,RFB4+,RFB6+, and RFA-2+) but lack T cell-associated markers such as T1 (CD5, p 67,000 dalton equivalent of murine Ly-1) and Tü-33. In fetal lymph nodes, primary nodules develop around the follicular dendritic (FD) cells from 17 wk onward, and contain a virtually pure population of B cells; B1+,BA1+,RFB4+,RFB6+,RFA-2+, which simultaneously express IgM,IgD together with T1 (CD5), a T cell-associated antigen. A sizeable subpopulation of these IgM+,T1+ cells are also positive for Tü-33, another T cell-associated marker. In the spleen, the B cells of the IgM+,IgD+,T1+ type appear in smaller numbers and only relatively late around wk 22. These cells are diffusely distributed at first, and start accumulating around the small FD cell clusters as soon as these emerge about the 23rd gestational wk. At that time, the IgM+,T1+B cells can also be washed out from the peritoneal and pleural cavities. The T1+,IgM+B cells may represent the normal equivalent cells of B chronic lymphoid leukemia and centrocytic lymphoma, and appear to be the counterpart of Ly-1+,IgM+B cells in the mouse.
Publication
Journal: Cancer Research
December/2/2007
Abstract
Combination chemotherapy regimen incorporating CD20 antibodies are commonly used in the treatment of CD20-positive non-Hodgkin's lymphoma (NHL). Fludarabine phosphate (F-araAMP), cyclophosphamide, and CD20 antibodies (Rituximab) constitute the FCR regimen for treating selected NHL, including aggressive mantle cell lymphoma (MCL). As an alternative to the CD20 antibody, we generated a CD20-targeted measles virus (MV)-based vector. This vector was also armed with the prodrug convertase purine nucleoside phosphorylase (PNP) that locally converts the active metabolite of F-araAMP to a highly diffusible substance capable of efficiently killing bystander cells. We showed in infected cells that early prodrug administration controls vector spread, whereas late administration enhances cell killing. Control of spread by early prodrug administration was also shown in an animal model: F-araAMP protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Enhanced oncolytic potency after extensive infection was shown in a Burkitt's lymphoma xenograft model (Raji cells): After systemic vector inoculation, prodrug administration enhanced the therapeutic effect synergistically. In a MCL xenograft model (Granta 519 cells), intratumoral (i.t.) vector administration alone had high oncolytic efficacy: All mice experienced complete but temporary tumor regression, and survival was two to four times longer than that of untreated mice. Cells from MCL patients were shown to be sensitive to infection. Thus, synergy of F-araAMP with a PNP-armed and CD20-targeted MV was shown in one lymphoma therapy model after systemic vector inoculation.
Publication
Journal: Seminars in Hematology
June/28/2010
Abstract
The last decade has seen the monoclonal antibody (mAb), rituximab, transform clinical management of many non-Hodgkin lymphomas and more recently provide new opportunities for controlling autoimmune conditions, such as rheumatoid arthritis. Although not yet fully determined, the explanation for this success appears to lie with the inherent properties of its target, CD20, which allow rituximab to recruit potent cytotoxic effectors with unusual efficiency. In this review we detail the properties of CD20 that make it such an effective therapeutic target and describe how different mAbs change the membrane distribution and internalization of CD20 and have distinct modes of cytotoxic activity.
Publication
Journal: Cancer Research
April/27/2010
Abstract
Antibody-Fc receptor (FcR) interactions play an important role in the mechanism of action of most therapeutic antibodies against cancer. Effector cell activation through FcR triggering may induce tumor cell killing via antibody-dependent cellular cytotoxicity (ADCC). Reciprocally, FcR cross-linking of antibody may lead to the induction of apoptotic signaling in tumor cells. The relative importance of these bisecting pathways to in vivo antibody activity is unknown. To unravel these roles, we developed a novel mouse model with normal FcR expression but in which FcR signaling was inactivated by mutation of the associated gamma-chain. Transgenic mice showed similar immune complex binding compared with wild-type mice. In contrast, ADCC of cells expressing frequently used cancer targets, such as CD20, epidermal growth factor receptor, Her2, and gp75, was abrogated. Using the therapeutic CD20 antibodies ofatumumab and rituximab, we show that FcR cross-linking of antibody-antigen immune complexes in the absence of gamma-chain signaling is insufficient for their therapeutic activity in vivo. ADCC therefore represents an essential mechanism of action for immunotherapy of lymphoid tumors.
Publication
Journal: Journal of Immunology
September/28/2014
Abstract
In multiple sclerosis (MS), B cell-depleting therapy using monoclonal anti-CD20 Abs, including rituximab (RTX) and ocrelizumab, effectively reduces disease activity. Based on indirect evidence, it is generally believed that elimination of the Ag-presenting capabilities and Ag nonspecific immune functions of B cells underlie the therapeutic efficacy. However, a small subset of T lymphocytes (T cells) was shown to also express CD20, but controversy prevails surrounding the true existence of this T cell subpopulation. Using single-cell imaging flow cytometry and expression profiling of sorted lymphocyte subsets, we unequivocally demonstrate the existence of CD3(+)CD20(dim) T cells. We show that in MS patients, increased levels of CD3(+)CD20(dim) T cells are effectively depleted by RTX. The pathological relevance of this T cell subset in MS remains to be determined. However, given their potential proinflammatory functionality, depletion of CD20-expressing T cells may also contribute to the therapeutic effect of RTX and other mAbs targeting CD20.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/1/1988
Abstract
The B1 (CD20) molecule is a Mr 33,000 phosphoprotein on the surface of human B lymphocytes that may serve a central role in the humoral immune response by regulating B-cell proliferation and differentiation. In this report, a cDNA clone that encodes the B1 molecule was isolated and the amino acid sequence of B1 was determined. B-cell-specific cDNA clones were selected from a human tonsillar cDNA library by differential hybridization with labeled cDNA derived from either size-fractionated B-cell mRNA or size-fractionated T-cell mRNA. Of the 261 cDNA clones isolated, 3 cross-hybridizing cDNA clones were chosen as potential candidates for encoding B1 based on their selective hybridization to RNA from B1-positive cell lines. The longest clone, pB1-21, contained a 2.8-kilobase insert with an 891-base-pair open reading frame that encodes a protein of 33 kDa. mRNA synthesized from the pB1-21 cDNA clone in vitro was translated into a protein of the same apparent molecular weight as B1. Limited proteinase digestion of the pB1-21 translation product and B1 generated peptides of the same sizes, indicating that the pB1-21 cDNA encodes the B1 molecule. Gel blot analysis indicated that pB1-21 hybridized with two mRNA species of 2.8 and 3.4 kilobases only in B1-positive cell lines. The amino acid sequence deduced from the pB1-21 nucleotide sequence apparently lacks a signal sequence and contains three extensive hydrophobic regions. The deduced B1 amino acid sequence shows no significant homology with other known proteins.
Publication
Journal: EMBO Journal
September/7/1988
Abstract
CD20 is an antigen expressed on normal and malignant human B cells that is thought to function as a receptor during B cell activation. Here we report the isolation of a CD20-specific cDNA clone from a lambda gt11 library using a polyclonal antiserum raised against purified CD20 antigen. Additional cDNA clones were then isolated from a lambda gt10 library. Alignment of the sequences of overlapping lambda clones reveal a single consensus sequence except for a divergence that preceded the first methionine within the open reading frame. Normal B cells and B cell lines contain a prominent 2.6 kb mRNA and a lower level of a 3.3 kb mRNA. An oligonucleotide derived from one of the divergent sequences hybridized to the 3.3 kb mRNA only, indicating that the two mRNA species are derived from an alternative splicing mechanism. The predicted amino acid sequence of CD20 reveals three major hydrophobic regions of approximately 53, 25 and 20 amino acids. CD20 lacks an NH2-terminal signal peptide and contains a highly charged COOH-terminal domain. Although CD20 is immunoprecipitated as a doublet of 33 and 35 kd proteins from B cells, in vitro translation of CD20 cDNA produced a single 33 kd protein that was specifically immunoprecipitated with monoclonal CD20 antibodies. CD20 was strongly phosphorylated on resting B cells after CDw40 stimulation, suggesting that CD20 may be functionally regulated by a protein kinase(s).
load more...