Egfr - Epidermal growth factor receptor
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(17K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell
September/6/1995
Abstract
Stat1 and Stat3 are latent transcriptional factors activated initially through phosphorylation on single tyrosine residues induced by cytokine and growth factor occupation of cell surface receptors. Here we show that phosphorylation on a single serine (residue 727) in each protein is also required for maximal transcriptional activity. Both cytokines and growth factors are capable of inducing the serine phosphorylation of Stat1 and Stat3. These experiments show that gene activation by Stat1 and Stat3, which obligatorily require tyrosine phosphorylation to become active, also depends for maximal activation on one or more of the many serine kinases.
Publication
Journal: Nature Cell Biology
June/18/2008
Abstract
Aggressive human brain tumours (gliomas) often express a truncated and oncogenic form of the epidermal growth factor receptor, known as EGFRvIII. Within each tumour only a small percentage of glioma cells may actually express EGFRvIII; however, most of the cells exhibit a transformed phenotype. Here we show that EGFRvIII can be 'shared' between glioma cells by intercellular transfer of membrane-derived microvesicles ('oncosomes'). EGFRvIII expression in indolent glioma cells stimulates formation of lipid-raft related microvesicles containing EGFRvIII. Microvesicles containing this receptor are then released to cellular surroundings and blood of tumour-bearing mice, and can merge with the plasma membranes of cancer cells lacking EGFRvIII. This event leads to the transfer of oncogenic activity, including activation of transforming signalling pathways (MAPK and Akt), changes in expression of EGFRvIII-regulated genes (VEGF, Bcl-x(L), p27), morphological transformation and increase in anchorage-independent growth capacity. Thus, membrane microvesicles of cancer cells can contribute to a horizontal propagation of oncogenes and their associated transforming phenotype among subsets of cancer cells.
Publication
Journal: Nature
March/15/2012
Abstract
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.
Publication
Journal: Cell
August/2/2006
Abstract
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.
Publication
Journal: Clinical Cancer Research
November/10/2013
Abstract
OBJECTIVE
All patients with EGF receptor (EGFR)-mutant lung cancers eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). Smaller series have identified various mechanisms of resistance, but systematic evaluation of a large number of patients to definitively establish the frequency of various mechanisms has not been conducted.
METHODS
Patients with lung adenocarcinomas and acquired resistance to erlotinib or gefitinib enrolled onto a prospective biopsy protocol and underwent a rebiopsy after the development of acquired resistance. Histology was reviewed. Samples underwent genotyping for mutations in EGFR, AKT1, BRAF, ERBB2, KRAS, MEK1, NRAS and PIK3CA, and FISH for MET and HER2.
RESULTS
Adequate tumor samples for molecular analysis were obtained in 155 patients. Ninety-eight had second-site EGFR T790M mutations [63%; 95% confidence interval (CI), 55%-70%] and four had small cell transformation (3%, 95% CI, 0%-6%). MET amplification was seen in 4 of 75 (5%; 95% CI, 1%-13%). HER2 amplification was seen in 3 of 24 (13%; 95% CI, 3%-32%). We did not detect any acquired mutations in PIK3CA, AKT1, BRAF, ERBB2, KRAS, MEK1, or NRAS (0 of 88, 0%; 95% CI, 0%-4%). Overlap among mechanisms of acquired resistance was seen in 4%.
CONCLUSIONS
This is the largest series reporting mechanisms of acquired resistance to EGFR-TKI therapy. We identified EGFR T790M as the most common mechanism of acquired resistance, whereas MET amplification, HER2 amplification, and small cell histologic transformation occur less frequently. More comprehensive methods to characterize molecular alterations in this setting are needed to improve our understanding of acquired resistance to EGFR-TKIs.
Publication
Journal: Journal of Biological Chemistry
May/9/1995
Abstract
Protein kinases activated by dual phosphorylation on Tyr and Thr (MAP kinases) can be grouped into two major classes: ERK and JNK. The ERK group regulates multiple targets in response to growth factors via a Ras-dependent mechanism. In contrast, JNK activates the transcription factor c-Jun in response to pro-inflammatory cytokines and exposure of cells to several forms of environmental stress. Recently, a novel mammalian protein kinase (p38) that shares sequence similarity with mitogen-activated protein (MAP) kinases was identified. Here, we demonstrate that p38, like JNK, is activated by treatment of cells with pro-inflammatory cytokines and environmental stress. The mechanism of p38 activation is mediated by dual phosphorylation on Thr-180 and Tyr-182. Immunofluorescence microscopy demonstrated that p38 MAP kinase is present in both the nucleus and cytoplasm of activated cells. Together, these data establish that p38 is a member of the mammalian MAP kinase group.
Publication
Journal: The Lancet Oncology
March/26/2014
Abstract
BACKGROUND
Afatinib-an oral irreversible ErbB family blocker-improves progression-free survival compared with pemetrexed and cisplatin for first-line treatment of patients with EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC). We compared afatinib with gemcitabine and cisplatin-a chemotherapy regimen widely used in Asia-for first-line treatment of Asian patients with EGFR mutation-positive advanced NSCLC.
METHODS
This open-label, randomised phase 3 trial was done at 36 centres in China, Thailand, and South Korea. After central testing for EGFR mutations, treatment-naive patients (stage IIIB or IV cancer [American Joint Committee on Cancer version 6], performance status 0-1) were randomly assigned (2:1) to receive either oral afatinib (40 mg per day) or intravenous gemcitabine 1000 mg/m(2) on day 1 and day 8 plus cisplatin 75 mg/m(2) on day 1 of a 3-week schedule for up to six cycles. Randomisation was done centrally with a random number-generating system and an interactive internet and voice-response system. Randomisation was stratified by EGFR mutation (Leu858Arg, exon 19 deletions, or other; block size three). Clinicians and patients were not masked to treatment assignment, but the independent central imaging review group were. Treatment continued until disease progression, intolerable toxic effects, or withdrawal of consent. The primary endpoint was progression-free survival assessed by independent central review (intention-to-treat population). This study is registered with ClinicalTrials.gov, NCT01121393.
RESULTS
910 patients were screened and 364 were randomly assigned (242 to afatinib, 122 to gemcitabine and cisplatin). Median progression-free survival was significantly longer in the afatinib group (11·0 months, 95% CI 9·7-13·7) than in the gemcitabine and cisplatin group (5·6 months, 5·1-6·7; hazard ratio 0·28, 95% CI 0·20-0·39; p<0·0001). The most common treatment-related grade 3 or 4 adverse events in the afatinib group were rash or acne (35 [14·6%] of 239 patients), diarrhoea (13 [5·4%]), and stomatitis or mucositis (13 [5·4%]), compared with neutropenia (30 [26·5%] of 113 patients), vomiting (22 [19·5%]), and leucopenia (17 [15·0%]) in the gemcitabine and cisplatin group. Treatment-related serious adverse events occurred in 15 (6·3%) patients in the afatinib group and nine (8·0%) patients in the gemcitabine and cisplatin group.
CONCLUSIONS
First-line afatinib significantly improves progression-free survival with a tolerable and manageable safety profile in Asian patients with EGFR mutation-positive advanced lung NSCLC. Afatinib should be considered as a first-line treatment option for this patient population.
BACKGROUND
Boehringer Ingelheim.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/22/2004
Abstract
Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.
Publication
Journal: Journal of Clinical Oncology
September/19/2005
Abstract
OBJECTIVE
Epidermal growth factor receptor (EGFR) mutations have been associated with tumor response to treatment with single-agent EGFR inhibitors in patients with relapsed non-small-cell lung cancer (NSCLC). The implications of EGFR mutations in patients treated with EGFR inhibitors plus first-line chemotherapy are unknown. KRAS is frequently activated in NSCLC. The relationship of KRAS mutations to outcome after EGFR inhibitor treatment has not been described.
METHODS
Previously untreated patients with advanced NSCLC in the phase III TRIBUTE study who were randomly assigned to carboplatin and paclitaxel with erlotinib or placebo were assessed for survival, response, and time to progression (TTP). EGFR exons 18 through 21 and KRAS exon 2 were sequenced in tumors from 274 patients. Outcomes were correlated with EGFR and KRAS mutations in retrospective subset analyses.
RESULTS
EGFR mutations were detected in 13% of tumors and were associated with longer survival, irrespective of treatment (P < .001). Among erlotinib-treated patients, EGFR mutations were associated with improved response rate (P < .05) and there was a trend toward an erlotinib benefit on TTP (P = .092), but not improved survival (P = .96). KRAS mutations (21% of tumors) were associated with significantly decreased TTP and survival in erlotinib plus chemotherapy-treated patients.
CONCLUSIONS
EGFR mutations may be a positive prognostic factor for survival in advanced NSCLC patients treated with chemotherapy with or without erlotinib, and may predict greater likelihood of response. Patients with KRAS-mutant NSCLC showed poorer clinical outcomes when treated with erlotinib and chemotherapy. Further studies are needed to confirm the findings of this retrospective subset analysis.
Publication
Journal: Science
September/9/2004
Abstract
Gefitinib (Iressa, Astra Zeneca Pharmaceuticals) is a tyrosine kinase inhibitor that targets the epidermal growth factor receptor (EGFR) and induces dramatic clinical responses in nonsmall cell lung cancers (NSCLCs) with activating mutations within the EGFR kinase domain. We report that these mutant EGFRs selectively activate Akt and signal transduction and activator of transcription (STAT) signaling pathways, which promote cell survival, but have no effect on extracellular signal-regulated kinase signaling, which induces proliferation. NSCLC cells expressing mutant EGFRs underwent extensive apoptosis after small interfering RNA-mediated knockdown of the mutant EGFR or treatment with pharmacological inhibitors of Akt and STAT signaling and were relatively resistant to apoptosis induced by conventional chemotherapeutic drugs. Thus, mutant EGFRs selectively transduce survival signals on which NSCLCs become dependent; inhibition of those signals by gefitinib may contribute to the drug's efficacy.
Publication
Journal: New England Journal of Medicine
May/17/2015
Abstract
BACKGROUND
The EGFR T790M mutation is the most common mechanism of drug resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in patients who have lung cancer with an EGFR mutation (EGFR-mutated lung cancer). In preclinical models, the EGFR inhibitor AZD9291 has been shown to be effective against both EGFR tyrosine kinase inhibitor-sensitizing and T790M resistance mutations.
METHODS
We administered AZD9291 at doses of 20 to 240 mg once daily in patients with advanced lung cancer who had radiologically documented disease progression after previous treatment with EGFR tyrosine kinase inhibitors. The study included dose-escalation cohorts and dose-expansion cohorts. In the expansion cohorts, prestudy tumor biopsies were required for central determination of EGFR T790M status. Patients were assessed for safety, pharmacokinetics, and efficacy.
RESULTS
A total of 253 patients were treated. Among 31 patients enrolled in the dose-escalation cohorts, no dose-limiting toxic effects occurred at the doses evaluated. An additional 222 patients were treated in five expansion cohorts. The most common all-cause adverse events were diarrhea, rash, nausea, and decreased appetite. The overall objective tumor response rate was 51% (95% confidence interval [CI], 45 to 58). Among 127 patients with centrally confirmed EGFR T790M who could be evaluated for response, the response rate was 61% (95% CI, 52 to 70). In contrast, among 61 patients without centrally detectable EGFR T790M who could be evaluated for response, the response rate was 21% (95% CI, 12 to 34). The median progression-free survival was 9.6 months (95% CI, 8.3 to not reached) in EGFR T790M-positive patients and 2.8 months (95% CI, 2.1 to 4.3) in EGFR T790M-negative patients.
CONCLUSIONS
AZD9291 was highly active in patients with lung cancer with the EGFR T790M mutation who had had disease progression during prior therapy with EGFR tyrosine kinase inhibitors. (Funded by AstraZeneca; ClinicalTrials.gov number, NCT01802632.).
Publication
Journal: New England Journal of Medicine
March/19/2008
Abstract
The glomerular microvasculature is particularly susceptible to injury in thrombotic microangiopathy, but the mechanisms by which this occurs are unclear. We report the cases of six patients who were treated with bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), in whom glomerular disease characteristic of thrombotic microangiopathy developed. To show that local reduction of VEGF within the kidney is sufficient to trigger the pathogenesis of thrombotic microangiopathy, we used conditional gene targeting to delete VEGF from renal podocytes in adult mice; this resulted in a profound thrombotic glomerular injury. These observations provide evidence that glomerular injury in patients who are treated with bevacizumab is probably due to direct targeting of VEGF by antiangiogenic therapy.
Publication
Journal: Journal of the National Cancer Institute
May/16/2005
Abstract
BACKGROUND
Gefitinib is a selective inhibitor of the epidermal growth factor (EGFR) tyrosine kinase, which is overexpressed in many cancers, including non-small-cell lung cancer (NSCLC). We carried out a clinical study to compare the relationship between EGFR gene copy number, EGFR protein expression, EGFR mutations, and Akt activation status as predictive markers for gefitinib therapy in advanced NSCLC.
METHODS
Tumors from 102 NSCLC patients treated daily with 250 mg of gefitinib were evaluated for EGFR status by fluorescence in situ hybridization (FISH), DNA sequencing, and immunohistochemistry and for Akt activation status (phospho-Akt [P-Akt]) by immunohistochemistry. Time to progression, overall survival, and 95% confidence intervals (CIs) were calculated and evaluated by the Kaplan-Meier method; groups were compared using the log-rank test. Risk factors associated with survival were evaluated using Cox proportional hazards regression modeling and multivariable analysis. All statistical tests were two-sided.
RESULTS
Amplification or high polysomy of the EGFR gene (seen in 33 of 102 patients) and high protein expression (seen in 58 of 98 patients) were statistically significantly associated with better response (36% versus 3%, mean difference = 34%, 95% CI = 16.6 to 50.3; P<.001), disease control rate (67% versus 26%, mean difference = 40.6%, 95% CI = 21.5 to 59.7; P<.001), time to progression (9.0 versus 2.5 months, mean difference = 6.5 months, 95% CI = 2.8 to 10.3; P<.001), and survival (18.7 versus 7.0 months, mean difference = 11.7 months, 95% CI = 2.1 to 21.4; P = .03). EGFR mutations (seen in 15 of 89 patients) were also statistically significantly related to response and time to progression, but the association with survival was not statistically significant, and 40% of the patients with mutation had progressive disease. In multivariable analysis, only high EGFR gene copy number remained statistically significantly associated with better survival (hazard ratio = 0.44, 95% CI = 0.23 to 0.82). Independent of EGFR assessment method, EGFR+/P-Akt+ patients had a statistically significantly better outcome than EGFR-, P-Akt-, or EGFR+/P-Akt- patients.
CONCLUSIONS
High EGFR gene copy number identified by FISH may be an effective molecular predictor for gefitinib efficacy in advanced NSCLC.
Publication
Journal: Cell
September/9/1992
Abstract
A cDNA clone encoding a novel, widely expressed protein (called growth factor receptor-bound protein 2 or GRB2) containing one src homology 2 (SH2) domain and two SH3 domains was isolated. Immunoblotting experiments indicate that GRB2 associates with tyrosine-phosphorylated epidermal growth factor receptors (EGFRs) and platelet-derived growth factor receptors (PDGFRs) via its SH2 domain. Interestingly, GRB2 exhibits striking structural and functional homology to the C. elegans protein sem-5. It has been shown that sem-5 and two other genes called let-23 (EGFR like) and let-60 (ras like) lie along the same signal transduction pathway controlling C. elegans vulval induction. To examine whether GRB2 is also a component of ras signaling in mammalian cells, microinjection studies were performed. While injection of GRB2 or H-ras proteins alone into quiescent rat fibroblasts did not have mitogenic effect, microinjection of GRB2 together with H-ras protein stimulated DNA synthesis. These results suggest that GRB2/sem-5 plays a crucial role in a highly conserved mechanism for growth factor control of ras signaling.
Publication
Journal: Oncogene
September/15/2008
Abstract
Genetic alterations in the kinase domain of the epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients are associated with sensitivity to treatment with small molecule tyrosine kinase inhibitors. Although first-generation reversible, ATP-competitive inhibitors showed encouraging clinical responses in lung adenocarcinoma tumors harboring such EGFR mutations, almost all patients developed resistance to these inhibitors over time. Such resistance to first-generation EGFR inhibitors was frequently linked to an acquired T790M point mutation in the kinase domain of EGFR, or upregulation of signaling pathways downstream of HER3. Overcoming these mechanisms of resistance, as well as primary resistance to reversible EGFR inhibitors driven by a subset of EGFR mutations, will be necessary for development of an effective targeted therapy regimen. Here, we show that BIBW2992, an anilino-quinazoline designed to irreversibly bind EGFR and HER2, potently suppresses the kinase activity of wild-type and activated EGFR and HER2 mutants, including erlotinib-resistant isoforms. Consistent with this activity, BIBW2992 suppresses transformation in isogenic cell-based assays, inhibits survival of cancer cell lines and induces tumor regression in xenograft and transgenic lung cancer models, with superior activity over erlotinib. These findings encourage further testing of BIBW2992 in lung cancer patients harboring EGFR or HER2 oncogenes.
Publication
Journal: Nature Cell Biology
August/1/2000
Abstract
Here we show that cells lacking focal adhesion kinase (FAK) are refractory to motility signals from platelet-derived and epidermal growth factors (PDGF and EGF respectively), and that stable re-expression of FAK rescues these defects. FAK associates with activated PDGF- and EGF-receptor (PDGFR and EGFR) signalling complexes, and expression of the band-4.1-like domain at the FAK amino terminus is sufficient to mediate an interaction with activated EGFR. However, efficient EGF-stimulated cell migration also requires FAK to be targeted, by its carboxy-terminal domain, to sites of integrin-receptor clustering. Although the kinase activity of FAK is not needed to promote PDGF- or EGF-stimulated cell motility, kinase-inactive FAK is transphosphorylated at the indispensable Src-kinase-binding site, FAK Y397, after EGF stimulation of cells. Our results establish that FAK is an important receptor-proximal link between growth-factor-receptor and integrin signalling pathways.
Publication
Journal: Nature Genetics
October/8/2012
Abstract
Human non-small cell lung cancers (NSCLCs) with activating mutations in EGFR frequently respond to treatment with EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, but responses are not durable, as tumors acquire resistance. Secondary mutations in EGFR (such as T790M) or upregulation of the MET kinase are found in over 50% of resistant tumors. Here, we report increased activation of AXL and evidence for epithelial-to-mesenchymal transition (EMT) in multiple in vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to erlotinib in the absence of the EGFR p.Thr790Met alteration or MET activation. Genetic or pharmacological inhibition of AXL restored sensitivity to erlotinib in these tumor models. Increased expression of AXL and, in some cases, of its ligand GAS6 was found in EGFR-mutant lung cancers obtained from individuals with acquired resistance to TKIs. These data identify AXL as a promising therapeutic target whose inhibition could prevent or overcome acquired resistance to EGFR TKIs in individuals with EGFR-mutant lung cancer.
Publication
Journal: Development (Cambridge)
April/27/2004
Abstract
Notch is a transmembrane receptor that mediates local cell-cell communication and coordinates a signaling cascade present in all animal species studied to date. Notch signaling is used widely to determine cell fates and to regulate pattern formation; its dysfunction results in a tremendous variety of developmental defects and adult pathologies. This primer describes the mechanism of Notch signal transduction and how it is used to control the formation of biological patterns.
Authors
Publication
Journal: Nature Reviews Genetics
February/8/2007
Abstract
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.
Publication
Journal: The Lancet Oncology
March/30/2015
Abstract
BACKGROUND
We aimed to assess the effect of afatinib on overall survival of patients with EGFR mutation-positive lung adenocarcinoma through an analysis of data from two open-label, randomised, phase 3 trials.
METHODS
Previously untreated patients with EGFR mutation-positive stage IIIB or IV lung adenocarcinoma were enrolled in LUX-Lung 3 (n=345) and LUX-Lung 6 (n=364). These patients were randomly assigned in a 2:1 ratio to receive afatinib or chemotherapy (pemetrexed-cisplatin [LUX-Lung 3] or gemcitabine-cisplatin [LUX-Lung 6]), stratified by EGFR mutation (exon 19 deletion [del19], Leu858Arg, or other) and ethnic origin (LUX-Lung 3 only). We planned analyses of mature overall survival data in the intention-to-treat population after 209 (LUX-Lung 3) and 237 (LUX-Lung 6) deaths. These ongoing studies are registered with ClinicalTrials.gov, numbers NCT00949650 and NCT01121393.
RESULTS
Median follow-up in LUX-Lung 3 was 41 months (IQR 35-44); 213 (62%) of 345 patients had died. Median follow-up in LUX-Lung 6 was 33 months (IQR 31-37); 246 (68%) of 364 patients had died. In LUX-Lung 3, median overall survival was 28.2 months (95% CI 24.6-33.6) in the afatinib group and 28.2 months (20.7-33.2) in the pemetrexed-cisplatin group (HR 0.88, 95% CI 0.66-1.17, p=0.39). In LUX-Lung 6, median overall survival was 23.1 months (95% CI 20.4-27.3) in the afatinib group and 23.5 months (18.0-25.6) in the gemcitabine-cisplatin group (HR 0.93, 95% CI 0.72-1.22, p=0.61). However, in preplanned analyses, overall survival was significantly longer for patients with del19-positive tumours in the afatinib group than in the chemotherapy group in both trials: in LUX-Lung 3, median overall survival was 33.3 months (95% CI 26.8-41.5) in the afatinib group versus 21.1 months (16.3-30.7) in the chemotherapy group (HR 0.54, 95% CI 0.36-0.79, p=0.0015); in LUX-Lung 6, it was 31.4 months (95% CI 24.2-35.3) versus 18.4 months (14.6-25.6), respectively (HR 0.64, 95% CI 0.44-0.94, p=0.023). By contrast, there were no significant differences by treatment group for patients with EGFR Leu858Arg-positive tumours in either trial: in LUX-Lung 3, median overall survival was 27.6 months (19.8-41.7) in the afatinib group versus 40.3 months (24.3-not estimable) in the chemotherapy group (HR 1.30, 95% CI 0.80-2.11, p=0.29); in LUX-Lung 6, it was 19.6 months (95% CI 17.0-22.1) versus 24.3 months (19.0-27.0), respectively (HR 1.22, 95% CI 0.81-1.83, p=0.34). In both trials, the most common afatinib-related grade 3-4 adverse events were rash or acne (37 [16%] of 229 patients in LUX-Lung 3 and 35 [15%] of 239 patients in LUX-Lung 6), diarrhoea (33 [14%] and 13 [5%]), paronychia (26 [11%] in LUX-Lung 3 only), and stomatitis or mucositis (13 [5%] in LUX-Lung 6 only). In LUX-Lung 3, neutropenia (20 [18%] of 111 patients), fatigue (14 [13%]) and leucopenia (nine [8%]) were the most common chemotherapy-related grade 3-4 adverse events, while in LUX-Lung 6, the most common chemotherapy-related grade 3-4 adverse events were neutropenia (30 [27%] of 113 patients), vomiting (22 [19%]), and leucopenia (17 [15%]).
CONCLUSIONS
Although afatinib did not improve overall survival in the whole population of either trial, overall survival was improved with the drug for patients with del19 EGFR mutations. The absence of an effect in patients with Leu858Arg EGFR mutations suggests that EGFR del19-positive disease might be distinct from Leu858Arg-positive disease and that these subgroups should be analysed separately in future trials.
BACKGROUND
Boehringer Ingelheim.
Publication
Journal: EMBO Journal
May/28/1997
Abstract
We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization.
Publication
Journal: Science
August/21/1995
Abstract
Gene targeting was used to create a null allele at the epidermal growth factor receptor locus (Egfr). The phenotype was dependent on genetic background. EGFR deficiency on a CF-1 background resulted in peri-implantation death due to degeneration of the inner cell mass. On a 129/Sv background, homozygous mutants died at mid-gestation due to placental defects; on a CD-1 background, the mutants lived for up to 3 weeks and showed abnormalities in skin, kidney, brain, liver, and gastrointestinal tract. The multiple abnormalities associated with EGFR deficiency indicate that the receptor is involved in a wide range of cellular activities.
Publication
Journal: Nature
December/6/2001
Abstract
The concept that stem cells are controlled by particular microenvironments known as 'niches' has been widely invoked. But niches have remained largely a theoretical construct because of the difficulty of identifying and manipulating individual stem cells and their surroundings. Technical advances now make it possible to characterize small zones that maintain and control stem cell activity in several organs, including gonads, skin and gut. These studies are beginning to unify our understanding of stem cell regulation at the cellular and molecular levels, and promise to advance efforts to use stem cells therapeutically.
Publication
Journal: Journal of Clinical Oncology
October/23/2003
Abstract
OBJECTIVE
The epidermal growth factor receptor (EGFR) is frequently overexpressed in non-small-cell lung carcinoma (NSCLC), and EGFR inhibitors are promising new therapeutic agents. The molecular mechanisms responsible for EGFR overexpression are poorly understood.
METHODS
Gene copy number and protein status of EGFR were investigated in microarrayed tumors from 183 NSCLC patients, including squamous cell carcinoma (SCC; 89 patients) and non-SCC (94 patients) histologies. Protein expression was assessed by immunohistochemistry on a scale from 0 to 400 (percentage of positive cells x staining intensity). Gene and chromosome 7 copy numbers were identified by fluorescent in situ hybridization (FISH).
RESULTS
EGFR protein overexpression was observed in 62% of the NSCLC (25% scored 201 to 300; 37% scored 301 to 400), more frequently in SCC than non-SCC (82% v 44%; P <.001), and in 80% of the bronchioloalveolar carcinomas. The prevalent FISH patterns were balanced disomy (40%) and trisomy (38%) for EGFR gene and chromosome 7 (40%), whereas balanced polysomy was seen in 13% and gene amplification was seen in 9% of the patients. Gene copy number correlated with protein expression (r = 0.4; P <.001). EGFR overexpression or high gene copy numbers had no significant influence on prognosis.
CONCLUSIONS
EGFR overexpression is frequent in NSCLC, is most prominent in SCC, and correlates with increased gene copy number per cell. High gene copy numbers per cell showed a trend toward poor prognosis. It will be important to evaluate EGFR gene and EGFR protein status and signal protein expression to properly interpret future clinical trials using EGFR inhibitors.
load more...