ctnnb1
Best match
All
Pubmeds
(4,768)
Pubmed
Journal: Cancer research
March/24/1998
Abstract

Among 222 primary colorectal cancers we examined, 58 showed no detectable APC mutations by the protein truncation test. We screened those 58 tumors for somatic mutations in the beta-catenin gene. Although amino acid substitutions in serine or threonine residues in exon 3 had been reported, we found no such mutations; however, in seven tumors, we detected somatic interstitial deletions of 234-760 bp, each of which included all or part of exon 3. Short nucleotide sequences at both ends of each deletion were either identical or complementary, indicating that repeated or inversely repeated sequences were involved in the somatic rearrangements. Reverse transcription-PCR experiments using RNAs isolated from three of these seven tumors detected transcripts that lacked exon 3, in addition to the normal transcript. In one of these cases, we confirmed accumulation of aberrant beta-catenin protein in cytoplasm and nuclei of cancer cells by Western and immunohistochemical analyses. This result suggested that, in the absence of a peptide encoded by exon 3, beta-catenin is stabilized and has a dominant oncogenic effect on colorectal tumorigenesis.

Pubmed
Journal: The Journal of cell biology
December/17/2001
Abstract

The pancreas is a complex organ that consists of separate endocrine and exocrine cell compartments. Although great strides have been made in identifying regulatory factors responsible for endocrine pancreas formation, the molecular regulatory circuits that control exocrine pancreas properties are just beginning to be elucidated. In an effort to identify genes involved in exocrine pancreas function, we have examined Mist1, a basic helix-loop-helix transcription factor expressed in pancreatic acinar cells. Mist1-null (Mist1(KO)) mice exhibit extensive disorganization of exocrine tissue and intracellular enzyme activation. The exocrine disorganization is accompanied by increases in p8, RegI/PSP, and PAP1/RegIII gene expression, mimicking the molecular changes observed in pancreatic injury. By 12 m, Mist1(KO) mice develop lesions that contain cells coexpressing acinar and duct cell markers. Analysis of the factors involved in cholecystokinin (CCK) signaling reveal inappropriate levels of the CCK receptor A and the inositol-1,4,5-trisphosphate receptor 3, suggesting that a functional defect exists in the regulated exocytosis pathway of Mist1(KO) mice. Based on these observations, we propose that Mist1(KO) mice represent a new genetic model for chronic pancreas injury and that the Mist1 protein serves as a key regulator of acinar cell function, stability, and identity.

Pubmed
Journal: Genes & development
November/11/2008
Abstract

Genesis of the trophectoderm and inner cell mass (ICM) lineages occurs in two stages. It is initiated via asymmetric divisions of eight- and 16-cell blastomeres that allocate cells to inner and outer positions, each with different developmental fates. Outside cells become committed to the trophectoderm at the blastocyst stage through Cdx2 activity, but here we show that Cdx2 can also act earlier to influence cell allocation. Increasing Cdx2 levels in individual blastomeres promotes symmetric divisions, thereby allocating more cells to the trophectoderm, whereas reducing Cdx2 promotes asymmetric divisions and consequently contribution to the ICM. Furthermore, both Cdx2 mRNA and protein levels are heterogeneous at the eight-cell stage. This heterogeneity depends on cell origin and has developmental consequences. Cdx2 expression is minimal in cells with unrestricted developmental potential that contribute preferentially to the ICM and is maximal in cells with reduced potential that contribute more to the trophectoderm. Finally, we describe a mutually reinforcing relationship between cellular polarity and Cdx2: Cdx2 influences cell polarity by up-regulating aPKC, but cell polarity also influences Cdx2 through asymmetric distribution of Cdx2 mRNA in polarized blastomeres. Thus, divisions generating inside and outside cells are truly asymmetric with respect to cell fate instructions. These two interacting effects ensure the generation of a stable outer epithelium by the blastocyst stage.

Pubmed
Journal: Molecular and cellular biology
May/20/1998
Abstract

Using a yeast two-hybrid method, we identified a novel protein which interacts with glycogen synthase kinase 3beta (GSK-3beta). This protein had 44% amino acid identity with Axin, a negative regulator of the Wnt signaling pathway. We designated this protein Axil for Axin like. Like Axin, Axil ventralized Xenopus embryos and inhibited Xwnt8-induced Xenopus axis duplication. Axil was phosphorylated by GSK-3beta. Axil bound not only to GSK-3beta but also to beta-catenin, and the GSK-3beta-binding site of Axil was distinct from the beta-catenin-binding site. Furthermore, Axil enhanced GSK-3beta-dependent phosphorylation of beta-catenin. These results indicate that Axil negatively regulates the Wnt signaling pathway by mediating GSK-3beta-dependent phosphorylation of beta-catenin, thereby inhibiting axis formation.

Pubmed
Journal: Molecular and cellular biology
March/16/2008
Abstract

Canonical Wnt signaling is mediated by a molecular "switch" that regulates the transcriptional properties of the T-cell factor (TCF) family of DNA-binding proteins. Members of the myeloid translocation gene (MTG) family of transcriptional corepressors are frequently disrupted by chromosomal translocations in acute myeloid leukemia, whereas MTG16 may be inactivated in up to 40% of breast cancer and MTG8 is a candidate cancer gene in colorectal carcinoma. Genetic studies imply that this corepressor family may function in stem cells. Given that mice lacking Myeloid Translocation Gene Related-1 (Mtgr1) fail to maintain the secretory lineage in the small intestine, we surveyed transcription factors that might recruit Mtgr1 in intestinal stem cells or progenitor cells and found that MTG family members associate specifically with TCF4. Coexpression of beta-catenin disrupted the association between these corepressors and TCF4. Furthermore, when expressed in Xenopus embryos, MTG family members inhibited axis formation and impaired the ability of beta-catenin and XLef-1 to induce axis duplication, indicating that MTG family members act downstream of beta-catenin. Moreover, we found that c-Myc, a transcriptional target of the Wnt pathway, was overexpressed in the small intestines of mice lacking Mtgr1, thus linking inactivation of Mtgr1 to the activation of a potent oncogene.

Pubmed
Journal: American journal of respiratory cell and molecular biology
March/4/2009
Abstract

Bronchiolar Clara cells undergo phenotypic changes during development and in disease. These changes are poorly described due to a paucity of molecular markers. We used chemical and transgenic approaches to ablate Clara cells, allowing identification of their unique gene expression profile. Flavin monooxygenase 3 (Fmo3), paraoxonase 1 (Pon1), aldehyde oxidase 3 (Aox3), and claudin 10 (Cldn10) were identified as novel Clara cell markers. New and existing Clara cell marker genes were categorized into three classes based on their unique developmental expression pattern. Cldn10 was uniformly expressed in the epithelium at Embryonic Day (E)14.5 and became restricted to secretory cells at E18.5. This transition was defined by induction of CCSP. Maturation of secretory cells was associated with progressive increases in the expression of Fmo3, Pon1, Aox3, and Cyp2f2 between late embryonic and postnatal periods. Messenger RNA abundance of all categories of genes was dramatically decreased after naphthalene-induced airway injury, and displayed a sequence of temporal induction during repair that suggested sequential secretory cell maturation. We have defined a broader repertoire of Clara cell-specific genes that allows staging of epithelial maturation during development and repair.

Pubmed
Journal: Annals of oncology : official journal of the European Society for Medical Oncology
July/2/2015
Abstract

BACKGROUND

Distant metastasis is the major cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) has a critical role in this process. Accumulating evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-29c has been implicated as a tumor suppressor in several human cancers. However, the role of miR-29c in the progression of colorectal cancer (CRC) metastasis remains largely unknown.

METHODS

The expression of miR-29c was examined by qRT-PCR in a cohort of primary CRC (PC) and distant liver metastasis (LM) tissues. A series of in vivo and in vitro assays were carried out in order to elucidate the functions of miR-29c and the molecular mechanisms underlying the pathogenesis of metastatic CRC.

RESULTS

miR-29c was markedly downregulated in PCs with distant metastasis and determined to be an independent predictor of shortened patient survival. But LM tissues showed higher levels of miR-29c than that in PC tissues. In CRC cells, miR-29c dramatically suppressed cell migration and invasion abilities in vitro and cancer metastasis in vivo. In addition, miR-29c inhibited EMT and negatively regulated Wnt/β-catenin signaling pathway. Guanine nucleotide binding protein alpha13 (GNA13) and protein tyrosine phosphatase type IVA (PTP4A) were identified as direct targets of miR-29c, which acted through ERK/GSK3β/β-catenin and AKT/GSK3β/β-catenin pathways, respectively, to regulate EMT. Furthermore, significant associations between miR-29c, its target genes (GNA13 and PTP4A) and EMT markers were validated in both PC and LM tissues.

CONCLUSIONS

Our findings highlight the important role of miR-29c in regulating CRC EMT via GSK-3β/β-catenin signaling by targeting GNA13 and PTP4A and provide new insights into the metastatic basis of CRC.

Pubmed
Journal: Journal of cell science
January/19/2000
Abstract

Ezrin, radixin, moesin and merlin form a subfamily of conserved proteins in the band 4.1 superfamily. The function of these proteins is to link the plasma membrane to the actin cytoskeleton. Merlin is defective or absent in schwannomas and meningiomas and has been suggested to function as a tumour suppressor. In this study, we have examined the role of ezrin as a potential regulator of the adhesive and invasive behaviour of tumour cells. We have shown that following inhibition of ezrin expression in colo-rectal cancer cells using antisense oligonucleotides, these cells displayed a reduced cell-cell adhesiveness together with a gain in their motile and invasive behaviour. These cells also displayed increased spreading over matrix-coated surfaces. Immunofluorescence studies revealed that antisense-treated cells also displayed an increased staining of paxillin in areas representing focal adhesions. Furthermore, coprecipitation studies revealed an association of ezrin with E-cadherin and beta-catenin. Induction of the phosphorylation of ezrin by orthovanadate and hepatocyte growth factor/scatter factor resulted in changes similar to those seen with antisense treatment, together with a marked decrease in the association of ezrin with both beta-catenin and E-cadherin. It is concluded that ezrin regulates cell-cell and cell-matrix adhesion, by interacting with cell adhesion molecules E-cadherin and beta-catenin, and may thus play an important role in the control of adhesion and invasiveness of cancer cells.

Pubmed
Journal: Molecular carcinogenesis
November/12/2007
Abstract

Beta-catenin can function as an oncogene when it is translocated to the nucleus, binds to T-cell factor (TCF) or lymphoid enhance factor and transactivate its target gene. The mechanism responsible for the activation of Wnt signaling pathway in the Cytotoxin-associated antigen A (CagA) Helicobacter pylori (H. pylori)-infected gastric carcinoma has not been elucidated. We hypothesize that whether interaction of MUC1 with beta-catenin modulates the Wnt signaling and its target gene cyclinD1 in CagA H. pylori-infected gastric carcinoma. The result demonstrate that binding of MUC1 CT with Protein Kinase C delta (PKC delta), tyrosine phosphorylation of MUC1 CT, and CagA are strongly associated with the interaction of MUC1 with beta-catenin in CagA H. pylori-infected gastric carcinoma. A statistically significant difference (chi(2) = 24.49; P < 0.001) was found when the binding of MUC1 CT and beta-catenin was compared to subcellular localization of beta-catenin. We also observed significant statistical correlation (chi(2) = 14.885; P < 0.001) between the cyclinD1 overexpression and the subcellular localization of beta-catenin. The overexpression of cyclinD1 was significantly higher (chi(2) = 13.785; P < 0.002) in advanced gastric carcinoma with CagA H. pylori infection. In addition cyclinD1 overexpression was significantly higher (chi(2) = 37.267; P < 0.001) with the interaction of MUC1 CT with beta-catenin in advanced gastric cancer. These findings indicate that MUC1 CT plays a role in the intracellular signaling through its interaction with beta-catenin and upregulate the Wnt target gene cyclinD1 in CagA H. pylori-infected gastric carcinoma.

Pubmed
Journal: Journal of cell science
March/24/2012
Abstract

The key read-out of Wnt signalling is a change in the transcriptional profile of the cell, which is driven by β-catenin. β-catenin levels are normally kept low by a phosphorylation event that is mediated by glycogen synthase kinase 3 (GSK3, α- and β-isoforms), which targets β-catenin for ubiquitylation and proteasomal degradation. Wnt blocks this phosphorylation event, thereby allowing β-catenin to accumulate and to co-activate transcription in the nucleus. Exactly how Wnt inhibits GSK3 activity towards β-catenin is unclear and has been the focus of intensive research. Recent studies on the role of conserved PPPSPxS motifs in the cytoplasmic tail of low-density lipoprotein receptor-related protein (LRP, isoforms 5 and 6) culminated in a biochemical model: Wnt induces the phosphorylation of LRP6 PPPSPxS motifs, which consequently access the catalytic pocket of GSK3 as pseudo-substrates, thus directly blocking its activity against β-catenin. A distinct cell-biological model was proposed more recently: Wnt proteins induce the uptake of GSK3 into multivesicular bodies (MVBs), an event that sequesters the enzyme away from newly synthesised β-catenin substrate in the cytoplasm, thus blocking its phosphorylation. This new model is based on intriguing observations but also challenges a body of existing evidence, so will require further experimental consolidation. We shall consider whether the two models apply to different modes of Wnt signaling: acute versus chronic.

load more...