Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(69K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature
November/25/2012
Abstract
We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.
Pulse
Views:
9
Posts:
No posts
Rating:
Not rated
Publication
Journal: New England Journal of Medicine
May/24/2004
Abstract
BACKGROUND
Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown.
METHODS
We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells.
RESULTS
Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib.
CONCLUSIONS
A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.
Pulse
Views:
4
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
June/30/2004
Abstract
Receptor tyrosine kinase genes were sequenced in non-small cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinib-insensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib.
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: New England Journal of Medicine
September/8/2009
Abstract
BACKGROUND
Previous, uncontrolled studies have suggested that first-line treatment with gefitinib would be efficacious in selected patients with non-small-cell lung cancer.
METHODS
In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival.
RESULTS
The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin-paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin-paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin-paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin-paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin-paclitaxel group.
CONCLUSIONS
Gefitinib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.)
Pulse
Views:
4
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cancer Cell
March/1/2010
Abstract
The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
June/5/2007
Abstract
The epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and erlotinib are effective treatments for lung cancers with EGFR activating mutations, but these tumors invariably develop drug resistance. Here, we describe a gefitinib-sensitive lung cancer cell line that developed resistance to gefitinib as a result of focal amplification of the MET proto-oncogene. inhibition of MET signaling in these cells restored their sensitivity to gefitinib. MET amplification was detected in 4 of 18 (22%) lung cancer specimens that had developed resistance to gefitinib or erlotinib. We find that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)-dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors. Thus, we propose that MET amplification may promote drug resistance in other ERBB-driven cancers as well.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: New England Journal of Medicine
June/28/2010
Abstract
BACKGROUND
Non-small-cell lung cancer with sensitive mutations of the epidermal growth factor receptor (EGFR) is highly responsive to EGFR tyrosine kinase inhibitors such as gefitinib, but little is known about how its efficacy and safety profile compares with that of standard chemotherapy.
METHODS
We randomly assigned 230 patients with metastatic, non-small-cell lung cancer and EGFR mutations who had not previously received chemotherapy to receive gefitinib or carboplatin-paclitaxel. The primary end point was progression-free survival; secondary end points included overall survival, response rate, and toxic effects.
RESULTS
In the planned interim analysis of data for the first 200 patients, progression-free survival was significantly longer in the gefitinib group than in the standard-chemotherapy group (hazard ratio for death or disease progression with gefitinib, 0.36; P<0.001), resulting in early termination of the study. The gefitinib group had a significantly longer median progression-free survival (10.8 months, vs. 5.4 months in the chemotherapy group; hazard ratio, 0.30; 95% confidence interval, 0.22 to 0.41; P<0.001), as well as a higher response rate (73.7% vs. 30.7%, P<0.001). The median overall survival was 30.5 months in the gefitinib group and 23.6 months in the chemotherapy group (P=0.31). The most common adverse events in the gefitinib group were rash (71.1%) and elevated aminotransferase levels (55.3%), and in the chemotherapy group, neutropenia (77.0%), anemia (64.6%), appetite loss (56.6%), and sensory neuropathy (54.9%). One patient receiving gefitinib died from interstitial lung disease.
CONCLUSIONS
First-line gefitinib for patients with advanced non-small-cell lung cancer who were selected on the basis of EGFR mutations improved progression-free survival, with acceptable toxicity, as compared with standard chemotherapy. (UMIN-CTR number, C000000376.)
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: The Lancet Oncology
April/22/2012
Abstract
BACKGROUND
Erlotinib has been shown to improve progression-free survival compared with chemotherapy when given as first-line treatment for Asian patients with non-small-cell lung cancer (NSCLC) with activating EGFR mutations. We aimed to assess the safety and efficacy of erlotinib compared with standard chemotherapy for first-line treatment of European patients with advanced EGFR-mutation positive NSCLC.
METHODS
We undertook the open-label, randomised phase 3 EURTAC trial at 42 hospitals in France, Italy, and Spain. Eligible participants were adults >> 18 years) with NSCLC and EGFR mutations (exon 19 deletion or L858R mutation in exon 21) with no history of chemotherapy for metastatic disease (neoadjuvant or adjuvant chemotherapy ending ≥ 6 months before study entry was allowed). We randomly allocated participants (1:1) according to a computer-generated allocation schedule to receive oral erlotinib 150 mg per day or 3 week cycles of standard intravenous chemotherapy of cisplatin 75 mg/m(2) on day 1 plus docetaxel (75 mg/m(2) on day 1) or gemcitabine (1250 mg/m(2) on days 1 and 8). Carboplatin (AUC 6 with docetaxel 75 mg/m(2) or AUC 5 with gemcitabine 1000 mg/m(2)) was allowed in patients unable to have cisplatin. Patients were stratified by EGFR mutation type and Eastern Cooperative Oncology Group performance status (0 vs 1 vs 2). The primary endpoint was progression-free survival (PFS) in the intention-to-treat population. We assessed safety in all patients who received study drug (≥ 1 dose). This study is registered with ClinicalTrials.gov, number NCT00446225.
RESULTS
Between Feb 15, 2007, and Jan 4, 2011, 174 patients with EGFR mutations were enrolled. One patient received treatment before randomisation and was thus withdrawn from the study; of the remaining patients, 86 were randomly assigned to receive erlotinib and 87 to receive standard chemotherapy. The preplanned interim analysis showed that the study met its primary endpoint; enrolment was halted, and full evaluation of the results was recommended. At data cutoff (Jan 26, 2011), median PFS was 9·7 months (95% CI 8·4-12·3) in the erlotinib group, compared with 5·2 months (4·5-5·8) in the standard chemotherapy group (hazard ratio 0·37, 95% CI 0·25-0·54; p < 0·0001). Main grade 3 or 4 toxicities were rash (11 [13%] of 84 patients given erlotinib vs none of 82 patients in the chemotherapy group), neutropenia (none vs 18 [22%]), anaemia (one [1%] vs three [4%]), and increased amino-transferase concentrations (two [2%] vs 0). Five (6%) patients on erlotinib had treatment-related severe adverse events compared with 16 patients (20%) on chemotherapy. One patient in the erlotinib group and two in the standard chemotherapy group died from treatment-related causes.
CONCLUSIONS
Our findings strengthen the rationale for routine baseline tissue-based assessment of EGFR mutations in patients with NSCLC and for treatment of mutation-positive patients with EGFR tyrosine-kinase inhibitors.
BACKGROUND
Spanish Lung Cancer Group, Roche Farma, Hoffmann-La Roche, and Red Temática de Investigacion Cooperativa en Cancer.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: New England Journal of Medicine
August/1/2004
Abstract
BACKGROUND
The epidermal growth factor receptor (EGFR), which participates in signaling pathways that are deregulated in cancer cells, commonly appears on colorectal-cancer cells. Cetuximab is a monoclonal antibody that specifically blocks the EGFR. We compared the efficacy of cetuximab in combination with irinotecan with that of cetuximab alone in metastatic colorectal cancer that was refractory to treatment with irinotecan.
METHODS
We randomly assigned 329 patients whose disease had progressed during or within three months after treatment with an irinotecan-based regimen to receive either cetuximab and irinotecan (at the same dose and schedule as in a prestudy regimen [218 patients]) or cetuximab monotherapy (111 patients). In cases of disease progression, the addition of irinotecan to cetuximab monotherapy was permitted. The patients were evaluated radiologically for tumor response and were also evaluated for the time to tumor progression, survival, and side effects of treatment.
RESULTS
The rate of response in the combination-therapy group was significantly higher than that in the monotherapy group (22.9 percent [95 percent confidence interval, 17.5 to 29.1 percent] vs. 10.8 percent [95 percent confidence interval, 5.7 to 18.1 percent], P=0.007). The median time to progression was significantly greater in the combination-therapy group (4.1 vs. 1.5 months, P<0.001 by the log-rank test). The median survival time was 8.6 months in the combination-therapy group and 6.9 months in the monotherapy group (P=0.48). Toxic effects were more frequent in the combination-therapy group, but their severity and incidence were similar to those that would be expected with irinotecan alone.
CONCLUSIONS
Cetuximab has clinically significant activity when given alone or in combination with irinotecan in patients with irinotecan-refractory colorectal cancer.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/29/2004
Abstract
Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
Publication
Journal: American Journal of Kidney Diseases
June/14/2009
Abstract
BACKGROUND
Estimation of glomerular filtration rate (GFR) is limited by differences in creatinine generation among ethnicities. Our previously reported GFR-estimating equations for Japanese had limitations because all participants had a GFR less than 90 mL/min/1.73 m2 and serum creatinine was assayed in different laboratories.
METHODS
Diagnostic test study using a prospective cross-sectional design. New equations were developed in 413 participants and validated in 350 participants. All samples were assayed in a central laboratory.
METHODS
Hospitalized Japanese patients in 80 medical centers. Patients had not participated in the previous study.
METHODS
Measured GFR (mGFR) computed from inulin clearance.
METHODS
Estimated GFR (eGFR) by using the modified isotope dilution mass spectrometry (IDMS)-traceable 4-variable Modification of Diet in Renal Disease (MDRD) Study equation using the previous Japanese Society of Nephrology Chronic Kidney Disease Initiative (JSN-CKDI) coefficient of 0.741 (equation 1), the previous JSN-CKDI equation (equation 2), and new equations derived in the development data set: modified MDRD Study using a new Japanese coefficient (equation 3), and a 3-variable Japanese equation (equation 4).
METHODS
Performance of equations was assessed by means of bias (eGFR - mGFR), accuracy (percentage of estimates within 15% or 30% of mGFR), root mean squared error, and correlation coefficient.
RESULTS
In the development data set, the new Japanese coefficient was 0.808 (95% confidence interval, 0.728 to 0.829) for the IDMS-MDRD Study equation (equation 3), and the 3-variable Japanese equation (equation 4) was eGFR (mL/min/1.73 m2) = 194 x Serum creatinine(-1.094) x Age(-0.287) x 0.739 (if female). In the validation data set, bias was -1.3 +/- 19.4 versus -5.9 +/- 19.0 mL/min/1.73 m2 (P = 0.002), and accuracy within 30% of mGFR was 73% versus 72% (P = 0.6) for equation 3 versus equation 1 and -2.1 +/- 19.0 versus -7.9 +/- 18.7 mL/min/1.73 m(2) (P < 0.001) and 75% versus 73% (P = 0.06) for equation 4 versus equation 2 (P = 0.06), respectively.
CONCLUSIONS
Most study participants had chronic kidney disease, and some may have had changing GFRs.
CONCLUSIONS
The new Japanese coefficient for the modified IDMS-MDRD Study equation and the new Japanese equation are more accurate for the Japanese population than the previously reported equations.
Publication
Journal: The Lancet Oncology
April/25/2010
Abstract
BACKGROUND
Patients with non-small-cell lung cancer harbouring mutations in the epidermal growth factor receptor (EGFR) gene respond well to the EGFR-specific tyrosine kinase inhibitor gefitinib. However, whether gefitinib is better than standard platinum doublet chemotherapy in patients selected by EGFR mutation is uncertain.
METHODS
We did an open label, phase 3 study (WJTOG3405) with recruitment between March 31, 2006, and June 22, 2009, at 36 centres in Japan. 177 chemotherapy-naive patients aged 75 years or younger and diagnosed with stage IIIB/IV non-small-cell lung cancer or postoperative recurrence harbouring EGFR mutations (either the exon 19 deletion or L858R point mutation) were randomly assigned, using a minimisation technique, to receive either gefitinib (250 mg/day orally; n=88) or cisplatin (80 mg/m(2), intravenously) plus docetaxel (60 mg/m(2), intravenously; n=89), administered every 21 days for three to six cycles. The primary endpoint was progression-free survival. Survival analysis was done with the modified intention-to-treat population. This study is registered with UMIN (University Hospital Medical Information Network in Japan), number 000000539.
RESULTS
Five patients were excluded (two patients were found to have thyroid and colon cancer after randomisation, one patient had an exon 18 mutation, one patient had insufficient consent, and one patient showed acute allergic reaction to docetaxel). Thus, 172 patients (86 in each group) were included in the survival analyses. The gefitinib group had significantly longer progression-free survival compared with the cisplatin plus docetaxel goup, with a median progression-free survival time of 9.2 months (95% CI 8.0-13.9) versus 6.3 months (5.8-7.8; HR 0.489, 95% CI 0.336-0.710, log-rank p<0.0001). Myelosuppression, alopecia, and fatigue were more frequent in the cisplatin plus docetaxel group, but skin toxicity, liver dysfunction, and diarrhoea were more frequent in the gefitinib group. Two patients in the gefitinib group developed interstitial lung disease (incidence 2.3%), one of whom died.
CONCLUSIONS
Patients with lung cancer who are selected by EGFR mutations have longer progression-free survival if they are treated with gefitinib than if they are treated with cisplatin plus docetaxel.
BACKGROUND
West Japan Oncology Group (WJOG): a non-profit organisation supported by unrestricted donations from several pharmaceutical companies.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: New England Journal of Medicine
February/27/2005
Abstract
Mutations of the epidermal growth factor receptor (EGFR) gene have been identified in specimens from patients with non-small-cell lung cancer who have a response to anilinoquinazoline EGFR inhibitors. Despite the dramatic responses to such inhibitors, most patients ultimately have a relapse. The mechanism of the drug resistance is unknown. Here we report the case of a patient with EGFR-mutant, gefitinib-responsive, advanced non-small-cell lung cancer who had a relapse after two years of complete remission during treatment with gefitinib. The DNA sequence of the EGFR gene in his tumor biopsy specimen at relapse revealed the presence of a second point mutation, resulting in threonine-to-methionine amino acid change at position 790 of EGFR. Structural modeling and biochemical studies showed that this second mutation led to gefitinib resistance.
Publication
Journal: Journal of Clinical Oncology
June/7/2007
Abstract
OBJECTIVE
Patients with advanced pancreatic cancer have a poor prognosis and there have been no improvements in survival since the introduction of gemcitabine in 1996. Pancreatic tumors often overexpress human epidermal growth factor receptor type 1 (HER1/EGFR) and this is associated with a worse prognosis. We studied the effects of adding the HER1/EGFR-targeted agent erlotinib to gemcitabine in patients with unresectable, locally advanced, or metastatic pancreatic cancer.
METHODS
Patients were randomly assigned 1:1 to receive standard gemcitabine plus erlotinib (100 or 150 mg/d orally) or gemcitabine plus placebo in a double-blind, international phase III trial. The primary end point was overall survival.
RESULTS
A total of 569 patients were randomly assigned. Overall survival based on an intent-to-treat analysis was significantly prolonged on the erlotinib/gemcitabine arm with a hazard ratio (HR) of 0.82 (95% CI, 0.69 to 0.99; P = .038, adjusted for stratification factors; median 6.24 months v 5.91 months). One-year survival was also greater with erlotinib plus gemcitabine (23% v 17%; P = .023). Progression-free survival was significantly longer with erlotinib plus gemcitabine with an estimated HR of 0.77 (95% CI, 0.64 to 0.92; P = .004). Objective response rates were not significantly different between the arms, although more patients on erlotinib had disease stabilization. There was a higher incidence of some adverse events with erlotinib plus gemcitabine, but most were grade 1 or 2.
CONCLUSIONS
To our knowledge, this randomized phase III trial is the first to demonstrate statistically significantly improved survival in advanced pancreatic cancer by adding any agent to gemcitabine. The recommended dose of erlotinib with gemcitabine for this indication is 100 mg/d.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: PLoS Medicine
April/17/2006
Abstract
BACKGROUND
Lung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of "acquired" resistance.
RESULTS
We show that in two of five patients with acquired resistance to gefitinib or erlotinib, progressing tumors contain, in addition to a primary drug-sensitive mutation in EGFR, a secondary mutation in exon 20, which leads to substitution of methionine for threonine at position 790 (T790M) in the kinase domain. Tumor cells from a sixth patient with a drug-sensitive EGFR mutation whose tumor progressed on adjuvant gefitinib after complete resection also contained the T790M mutation. This mutation was not detected in untreated tumor samples. Moreover, no tumors with acquired resistance had KRAS mutations, which have been associated with primary resistance to these drugs. Biochemical analyses of transfected cells and growth inhibition studies with lung cancer cell lines demonstrate that the T790M mutation confers resistance to EGFR mutants usually sensitive to either gefitinib or erlotinib. Interestingly, a mutation analogous to T790M has been observed in other kinases with acquired resistance to another kinase inhibitor, imatinib (Gleevec).
CONCLUSIONS
In patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.
Publication
Journal: Cell
December/16/2013
Abstract
We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.
Publication
Journal: The Lancet Oncology
October/4/2011
Abstract
BACKGROUND
Activating mutations in EGFR are important markers of response to tyrosine kinase inhibitor (TKI) therapy in non-small-cell lung cancer (NSCLC). The OPTIMAL study compared efficacy and tolerability of the TKI erlotinib versus standard chemotherapy in the first-line treatment of patients with advanced EGFR mutation-positive NSCLC.
METHODS
We undertook an open-label, randomised, phase 3 trial at 22 centres in China. Patients older than 18 years with histologically confirmed stage IIIB or IV NSCLC and a confirmed activating mutation of EGFR (exon 19 deletion or exon 21 L858R point mutation) received either oral erlotinib (150 mg/day) until disease progression or unacceptable toxic effects, or up to four cycles of gemcitabine plus carboplatin. Patients were randomly assigned (1:1) with a minimisation procedure and were stratified according to EGFR mutation type, histological subtype (adenocarcinoma vs non-adenocarcinoma), and smoking status. The primary outcome was progression-free survival, analysed in patients with confirmed disease who received at least one dose of study treatment. The trial is registered at ClinicalTrials.gov, number NCT00874419, and has completed enrolment; patients are still in follow-up.
RESULTS
83 patients were randomly assigned to receive erlotinib and 82 to receive gemcitabine plus carboplatin; 82 in the erlotinib group and 72 in the chemotherapy group were included in analysis of the primary endpoint. Median progression-free survival was significantly longer in erlotinib-treated patients than in those on chemotherapy (13.1 [95% CI 10.58-16.53] vs 4.6 [4.21-5.42] months; hazard ratio 0.16, 95% CI 0.10-0.26; p<0.0001). Chemotherapy was associated with more grade 3 or 4 toxic effects than was erlotinib (including neutropenia in 30 [42%] of 72 patients and thrombocytopenia in 29 [40%] patients on chemotherapy vs no patients with either event on erlotinib); the most common grade 3 or 4 toxic effects with erlotinib were increased alanine aminotransferase concentrations (three [4%] of 83 patients) and skin rash (two [2%] patients). Chemotherapy was also associated with increased treatment-related serious adverse events (ten [14%] of 72 patients [decreased platelet count, n=8; decreased neutrophil count, n=1; hepatic dysfunction, n=1] vs two [2%] of 83 patients [both hepatic dysfunction]).
CONCLUSIONS
Compared with standard chemotherapy, erlotinib conferred a significant progression-free survival benefit in patients with advanced EGFR mutation-positive NSCLC and was associated with more favourable tolerability. These findings suggest that erlotinib is important for first-line treatment of patients with advanced EGFR mutation-positive NSCLC.
BACKGROUND
F Hoffmann-La Roche Ltd (China); Science and Technology Commission of Shanghai Municipality.
Publication
Journal: Nature
November/9/2008
Abstract
Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.
Publication
Journal: Nature
September/15/2014
Abstract
Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.
Publication
Journal: Journal of Clinical Oncology
May/12/2008
Abstract
OBJECTIVE
Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials.
METHODS
KRAS mutations were detected using polymerase chain reaction on DNA from tumor sections collected in a phase III mCRC trial comparing panitumumab monotherapy to best supportive care (BSC). We tested whether the effect of panitumumab on progression-free survival (PFS) differed by KRAS status.
RESULTS
KRAS status was ascertained in 427 (92%) of 463 patients (208 panitumumab, 219 BSC). KRAS mutations were found in 43% of patients. The treatment effect on PFS in the wild-type (WT) KRAS group (hazard ratio [HR], 0.45; 95% CI: 0.34 to 0.59) was significantly greater (P < .0001) than in the mutant group (HR, 0.99; 95% CI, 0.73 to 1.36). Median PFS in the WT KRAS group was 12.3 weeks for panitumumab and 7.3 weeks for BSC. Response rates to panitumumab were 17% and 0%, for the WT and mutant groups, respectively. WT KRAS patients had longer overall survival (HR, 0.67; 95% CI, 0.55 to 0.82; treatment arms combined). Consistent with longer exposure, more grade III treatment-related toxicities occurred in the WT KRAS group. No significant differences in toxicity were observed between the WT KRAS group and the overall population.
CONCLUSIONS
Panitumumab monotherapy efficacy in mCRC is confined to patients with WT KRAS tumors. KRAS status should be considered in selecting patients with mCRC as candidates for panitumumab monotherapy.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Thoracic Oncology
May/4/2011
Abstract
BACKGROUND
Adenocarcinoma is the most common histologic type of lung cancer. To address advances in oncology, molecular biology, pathology, radiology, and surgery of lung adenocarcinoma, an international multidisciplinary classification was sponsored by the International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society. This new adenocarcinoma classification is needed to provide uniform terminology and diagnostic criteria, especially for bronchioloalveolar carcinoma (BAC), the overall approach to small nonresection cancer specimens, and for multidisciplinary strategic management of tissue for molecular and immunohistochemical studies.
METHODS
An international core panel of experts representing all three societies was formed with oncologists/pulmonologists, pathologists, radiologists, molecular biologists, and thoracic surgeons. A systematic review was performed under the guidance of the American Thoracic Society Documents Development and Implementation Committee. The search strategy identified 11,368 citations of which 312 articles met specified eligibility criteria and were retrieved for full text review. A series of meetings were held to discuss the development of the new classification, to develop the recommendations, and to write the current document. Recommendations for key questions were graded by strength and quality of the evidence according to the Grades of Recommendation, Assessment, Development, and Evaluation approach.
RESULTS
The classification addresses both resection specimens, and small biopsies and cytology. The terms BAC and mixed subtype adenocarcinoma are no longer used. For resection specimens, new concepts are introduced such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) for small solitary adenocarcinomas with either pure lepidic growth (AIS) or predominant lepidic growth with ≤ 5 mm invasion (MIA) to define patients who, if they undergo complete resection, will have 100% or near 100% disease-specific survival, respectively. AIS and MIA are usually nonmucinous but rarely may be mucinous. Invasive adenocarcinomas are classified by predominant pattern after using comprehensive histologic subtyping with lepidic (formerly most mixed subtype tumors with nonmucinous BAC), acinar, papillary, and solid patterns; micropapillary is added as a new histologic subtype. Variants include invasive mucinous adenocarcinoma (formerly mucinous BAC), colloid, fetal, and enteric adenocarcinoma. This classification provides guidance for small biopsies and cytology specimens, as approximately 70% of lung cancers are diagnosed in such samples. Non-small cell lung carcinomas (NSCLCs), in patients with advanced-stage disease, are to be classified into more specific types such as adenocarcinoma or squamous cell carcinoma, whenever possible for several reasons: (1) adenocarcinoma or NSCLC not otherwise specified should be tested for epidermal growth factor receptor (EGFR) mutations as the presence of these mutations is predictive of responsiveness to EGFR tyrosine kinase inhibitors, (2) adenocarcinoma histology is a strong predictor for improved outcome with pemetrexed therapy compared with squamous cell carcinoma, and (3) potential life-threatening hemorrhage may occur in patients with squamous cell carcinoma who receive bevacizumab. If the tumor cannot be classified based on light microscopy alone, special studies such as immunohistochemistry and/or mucin stains should be applied to classify the tumor further. Use of the term NSCLC not otherwise specified should be minimized.
CONCLUSIONS
This new classification strategy is based on a multidisciplinary approach to diagnosis of lung adenocarcinoma that incorporates clinical, molecular, radiologic, and surgical issues, but it is primarily based on histology. This classification is intended to support clinical practice, and research investigation and clinical trials. As EGFR mutation is a validated predictive marker for response and progression-free survival with EGFR tyrosine kinase inhibitors in advanced lung adenocarcinoma, we recommend that patients with advanced adenocarcinomas be tested for EGFR mutation. This has implications for strategic management of tissue, particularly for small biopsies and cytology samples, to maximize high-quality tissue available for molecular studies. Potential impact for tumor, node, and metastasis staging include adjustment of the size T factor according to only the invasive component (1) pathologically in invasive tumors with lepidic areas or (2) radiologically by measuring the solid component of part-solid nodules.
Publication
Journal: Science Translational Medicine
July/13/2011
Abstract
Lung cancers harboring mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors, but drug resistance invariably emerges. To elucidate mechanisms of acquired drug resistance, we performed systematic genetic and histological analyses of tumor biopsies from 37 patients with drug-resistant non-small cell lung cancers (NSCLCs) carrying EGFR mutations. All drug-resistant tumors retained their original activating EGFR mutations, and some acquired known mechanisms of resistance including the EGFR T790M mutation or MET gene amplification. Some resistant cancers showed unexpected genetic changes including EGFR amplification and mutations in the PIK3CA gene, whereas others underwent a pronounced epithelial-to-mesenchymal transition. Surprisingly, five resistant tumors (14%) transformed from NSCLC into small cell lung cancer (SCLC) and were sensitive to standard SCLC treatments. In three patients, serial biopsies revealed that genetic mechanisms of resistance were lost in the absence of the continued selective pressure of EGFR inhibitor treatment, and such cancers were sensitive to a second round of treatment with EGFR inhibitors. Collectively, these results deepen our understanding of resistance to EGFR inhibitors and underscore the importance of repeatedly assessing cancers throughout the course of the disease.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: The Lancet
June/29/2010
Abstract
BACKGROUND
Substantial controversy surrounds the use of estimated glomerular filtration rate (eGFR) and albuminuria to define chronic kidney disease and assign its stages. We undertook a meta-analysis to assess the independent and combined associations of eGFR and albuminuria with mortality.
METHODS
In this collaborative meta-analysis of general population cohorts, we pooled standardised data for all-cause and cardiovascular mortality from studies containing at least 1000 participants and baseline information about eGFR and urine albumin concentrations. Cox proportional hazards models were used to estimate hazard ratios (HRs) for all-cause and cardiovascular mortality associated with eGFR and albuminuria, adjusted for potential confounders.
RESULTS
The analysis included 105,872 participants (730,577 person-years) from 14 studies with urine albumin-to-creatinine ratio (ACR) measurements and 1,128,310 participants (4,732,110 person-years) from seven studies with urine protein dipstick measurements. In studies with ACR measurements, risk of mortality was unrelated to eGFR between 75 mL/min/1.73 m(2) and 105 mL/min/1.73 m(2) and increased at lower eGFRs. Compared with eGFR 95 mL/min/1.73 m(2), adjusted HRs for all-cause mortality were 1.18 (95% CI 1.05-1.32) for eGFR 60 mL/min/1.73 m(2), 1.57 (1.39-1.78) for 45 mL/min/1.73 m(2), and 3.14 (2.39-4.13) for 15 mL/min/1.73 m(2). ACR was associated with risk of mortality linearly on the log-log scale without threshold effects. Compared with ACR 0.6 mg/mmol, adjusted HRs for all-cause mortality were 1.20 (1.15-1.26) for ACR 1.1 mg/mmol, 1.63 (1.50-1.77) for 3.4 mg/mmol, and 2.22 (1.97-2.51) for 33.9 mg/mmol. eGFR and ACR were multiplicatively associated with risk of mortality without evidence of interaction. Similar findings were recorded for cardiovascular mortality and in studies with dipstick measurements.
CONCLUSIONS
eGFR less than 60 mL/min/1.73 m(2) and ACR 1.1 mg/mmol (10 mg/g) or more are independent predictors of mortality risk in the general population. This study provides quantitative data for use of both kidney measures for risk assessment and definition and staging of chronic kidney disease.
BACKGROUND
Kidney Disease: Improving Global Outcomes (KDIGO), US National Kidney Foundation, and Dutch Kidney Foundation.
Publication
Journal: Oncogene
June/21/2007
Abstract
Mitogen-activated protein kinase (MAPK) cascades are key signaling pathways involved in the regulation of normal cell proliferation, survival and differentiation. Aberrant regulation of MAPK cascades contribute to cancer and other human diseases. In particular, the extracellular signal-regulated kinase (ERK) MAPK pathway has been the subject of intense research scrutiny leading to the development of pharmacologic inhibitors for the treatment of cancer. ERK is a downstream component of an evolutionarily conserved signaling module that is activated by the Raf serine/threonine kinases. Raf activates the MAPK/ERK kinase (MEK)1/2 dual-specificity protein kinases, which then activate ERK1/2. The mutational activation of Raf in human cancers supports the important role of this pathway in human oncogenesis. Additionally, the Raf-MEK-ERK pathway is a key downstream effector of the Ras small GTPase, the most frequently mutated oncogene in human cancers. Finally, Ras is a key downstream effector of the epidermal growth factor receptor (EGFR), which is mutationally activated and/or overexpressed in a wide variety of human cancers. ERK activation also promotes upregulated expression of EGFR ligands, promoting an autocrine growth loop critical for tumor growth. Thus, the EGFR-Ras-Raf-MEK-ERK signaling network has been the subject of intense research and pharmaceutical scrutiny to identify novel target-based approaches for cancer treatment. In this review, we summarize the current status of the different approaches and targets that are under evaluation and development for the therapeutic intervention of this key signaling pathway in human disease.
load more...