Propranolol
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(32K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Circulation
March/5/2000
Abstract
BACKGROUND
beta-blockers are routinely prescribed in congenital long-QT syndrome (LQTS), but the effectiveness and limitations of beta-blockers in this disorder have not been evaluated.
RESULTS
The study population comprised 869 LQTS patients treated with beta-blockers. Effectiveness of beta-blockers was analyzed during matched periods before and after starting beta-blocker therapy, and by survivorship methods to determine factors associated with cardiac events while on prescribed beta-blockers. After initiation of beta-blockers, there was a significant (P<0.001) reduction in the rate of cardiac events in probands (0.97+/-1.42 to 0.31+/-0.86 events per year) and in affected family members (0. 26+/-0.84 to 0.15+/-0.69 events per year) during 5-year matched periods. On-therapy survivorship analyses revealed that patients with cardiac symptoms before beta-blockers (n=598) had a hazard ratio of 5.8 (95% CI, 3.7 to 9.1) for recurrent cardiac events (syncope, aborted cardiac arrest, or death) during beta-blocker therapy compared with asymptomatic patients; 32% of these symptomatic patients will have another cardiac event within 5 years while on prescribed beta-blockers. Patients with a history of aborted cardiac arrest before starting beta-blockers (n=113) had a hazard ratio of 12.9 (95% CI, 4.7 to 35.5) for aborted cardiac arrest or death while on prescribed beta-blockers compared with asymptomatic patients; 14% of these patients will have another arrest (aborted or fatal) within 5 years on beta-blockers.
CONCLUSIONS
beta-blockers are associated with a significant reduction in cardiac events in LQTS patients. However, syncope, aborted cardiac arrest, and LQTS-related death continue to occur while patients are on prescribed beta-blockers, particularly in those who were symptomatic before starting this therapy.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/24/1977
Abstract
Treatment of turkey erthrocyte membranes with cholera toxin caused an enhancement of the basal and catecholamine-stimulated adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activities. Both of these activities required the presence of GTP. The toxin effect on the adenylate cyclase activity concided with an inhibition of the catecholamine-stimulated guanosinetriphosphatase activity. Inhibition of the guanosinetriphosphatase, as well as enhancement of the adenylate cyclase activity, showed the same dependence on cholera toxin concentrations, and the effect of the toxin on both activities was dependent on the presence of NAD. It is proposed that continuous GTP hydrolysis at the regulatory guanyl nucleotide site is an essential turn-off mechanism, terminating activation of the adenylate cyclase. Cholera toxin inhibits the turn-off guanosinetriphosphatase reaction and thereby causes activation of the adenylate cyclase. According to this mechanism GTP should activate the toxin-treated preparation of adenylate cyclase, as does the hydrolysis-resistant analog guanosine 5'-(beta,gamma-immino)triphosphate [Gpp(NH)p]. Indeed, the toxin-treated adenylate cyclase was maximally activated, in the presence of isoproternol, by either GTP or Gpp(NH)p, while adenylate cyclase not treated with toxin was stimulated by hormone plus GTP to only one-fifth of the activity achieved with hormone plus Gpp(NH)p. Furthermore, the toxin-treated adenylate cyclase activated by isoproterenol plus GTP remained active for and extended period (half-time of 3 min) upon subsequent addition of the beta-adrenergic blocker, propranolol. The native enzyme, however, was refractory to propranolol only if activated by Gpp(NH)p but not by GTP.
Publication
Journal: Nature
February/23/2000
Abstract
Cessation of drug use in chronic opiate abusers produces a severe withdrawal syndrome that is highly aversive, and avoidance of withdrawal or associated stimuli is a major factor contributing to opiate abuse. Increased noradrenaline in the brain has long been implicated in opiate withdrawal, but it has not been clear which noradrenergic systems are involved. Here we show that microinjection of beta-noradrenergic-receptor antagonists, or of an alpha2-receptor agonist, into the bed nucleus of the stria terminalis (BNST) in rats markedly attenuates opiate-withdrawal-induced conditioned place aversion. Immunohistochemical studies revealed that numerous BNST-projecting cells in the A1 and A2 noradrenergic cell groups of the caudal medulla were activated during withdrawal. Lesion of these ascending medullary projections also greatly reduced opiate-withdrawal-induced place aversion, whereas lesion of locus coeruleus noradrenergic projections had no effect on opiate-withdrawal behaviour. We conclude that noradrenergic inputs to the BNST from the caudal medulla are critically involved in the aversiveness of opiate withdrawal.
Publication
Journal: Journal of Psychiatric Research
June/23/2008
Abstract
The beta-adrenergic blocker propranolol given within hours of a psychologically traumatic event reduces physiologic responses during subsequent mental imagery of the event. Here we tested the effect of propranolol given after the retrieval of memories of past traumatic events. Subjects with chronic post-traumatic stress disorder described their traumatic event during a script preparation session and then received a one-day dose of propranolol (n=9) or placebo (n=10), randomized and double-blind. A week later, they engaged in script-driven mental imagery of their traumatic event while heart rate, skin conductance, and left corrugator electromyogram were measured. Physiologic responses were significantly smaller in the subjects who had received post-reactivation propranolol a week earlier. Propranolol given after reactivation of the memory of a past traumatic event reduces physiologic responding during subsequent mental imagery of the event in a similar manner to propranolol given shortly after the occurrence of a traumatic event.
Publication
Journal: American Journal of Cardiology
June/18/1971
Publication
Journal: Circulation Research
April/25/2004
Abstract
Cardiomyocyte regeneration is limited in adult life. Thus, the identification of a putative source of cardiomyocyte progenitors is of great interest to provide a usable model in vitro and new perspective in regenerative therapy. As adipose tissues were recently demonstrated to contain pluripotent stem cells, the emergence of cardiomyocyte phenotype from adipose-derived cells was investigated. We demonstrated that rare beating cells with cardiomyocyte features could be identified after culture of adipose stroma cells without addition of 5-azacytidine. The cardiomyocyte phenotype was first identified by morphological observation, confirmed with expression of specific cardiac markers, immunocytochemistry staining, and ultrastructural analysis, revealing the presence of ventricle- and atrial-like cells. Electrophysiological studies performed on early culture revealed a pacemaker activity of the cells. Finally, functional studies showed that adrenergic agonist stimulated the beating rate whereas cholinergic agonist decreased it. Taken together, this study demonstrated that functional cardiomyocyte-like cells could be directly obtained from adipose tissue. According to the large amount of this tissue in adult mammal, it could represent a useful source of cardiomyocyte progenitors.
Publication
Journal: New England Journal of Medicine
October/1/1976
Abstract
We studied the effects of cigarette smoking, sham smoking and smoking during adrenergic blockade in 10 subjects to determine whether smoking released the sympathetic neurotransmitter norepinephrine, as well as the adrenomedullary hormone epinephrine, and whether smoking-associated hemodynamic and metabolic changes were mediated through adrenergic mechanisms. Smoking-associated increments in mean (+/- S.E.M.) plasma norepinephrine (227 +/- 23 to 324 +/- 39 pg per milliliter, P less than 0.01) and epinephrine (44 +/- to 113 +/- 27 pg per milliliter, P less than 0.05) were demonstrated. Smoking-associated increments in pulse rate, blood pressure, blood glycerol and blood lactate/pyruvate ratio were prevented by adrenergic blockade; increments in plasma growth hormone and cortisol were not. Since significant smoking-associated increments, in pulse rate, blood pressure and blood lactate/pyruvate ratio, preceded measurable increments in plasma catecholamine concentrations, but were adrenergically mediated, these changes should be attributed to norepinephrine released locally from adrenergic axon terminals within the tissues rather than to increments in circulating catecholamines.
Publication
Journal: Annals of Surgery
December/18/1974
Abstract
Hypermetabolism characterizes the metabolic response to thermal injury and the extent of energy production is positively related to the rate of urinary catecholamine excretion. Alpha and beta adrenergic blockade decreased metabolism from 69.6 +/- 5.3 Kcal/m(2)/hr to 57.4 +/- 5.2 (p < 0.01), and infusion of 6 microgm epinephrine/minute in normal man significantly increased metabolic rate. Twenty noninfected burned adults with a mean burn size of 45% total body surface (range 7-84%) and four normal controls were studied in an environmental chamber at two or more temperatures between 19 and 33 C with vapor pressure constant at 11.88 mm Hg. All burn patients were hypermetabolic at all temperatures studied and their core and mean skin temperatures were significantly elevated above control values. Between 25 and 33 C ambient, metabolism was unchanged in controls and burns of less than 40% total body surface (48.9 +/- 4.6 Kcal/m(2)/hr vs. 48.9 +/- 4.5), but metabolic rate decreased in larger burns in the warmer environment (72.0 +/- 1.9 vs. 65.8 +/- 1.7, p < 0.001). At 21 C, metabolism and catecholamines increased, except in four nonsurvivors who became hypothermic with decreased catechol elaboration. Metabolic rate in ten patients with bacteremia was below predicted levels while catecholamines were markedly elevated suggesting interference with tissue uptake of the neurohormonal transmitters. Feeding burn patients or administering glucose and insulin improved nitrogen retention and altered substrate flow but did not significantly reduce urinary catecholamines or metabolic rate. Burned patients are internally warm, not externally cold, and catecholamines appear to mediate their increased heat production. Hypermetabolism may be modified by ambient temperature, infection, and pharmacologic means. Alterations in hypothalamic function due to injury, resulting in increased catecholamine elaboration, would explain the metabolic response to thermal injury.
Publication
Journal: Journal of Neuroscience Methods
April/21/1982
Abstract
The social interaction test in rats provides a method for detecting anxiolytic activity that does not use food or water deprivation, or electric shock, and therefore obviates difficulties of interpretation that might arise from drug-induced changes in motivation. Since social interaction is measured under more than one test condition any overall increase or decrease in social behaviour can be detected independently from the drug x test condition interaction that characterizes an anxiolytic drug. The Geller-Seifter conflict test was designed with two schedules of reinforcement for the same reasons. Any candidate test for anxiolytic action that examines drug effects under only one experimental condition is open to misinterpretation and may also prove unreliable if the critical experimental factors ( e.g. the level of food deprivation or the shock intensity) are changed. The testing procedure in the social interaction test is relatively time consuming in terms of observer-hours, but no lengthy pretraining of the animals is required. There is no way of fully automating the scoring and therefore it is important that the observers do not know the experimental group of the rats that they are scoring, and that tape recordings are made so that the scores can be checked. It has not so far been fruitful to analyze drug effects on every individual social behaviour, but this method does allow changes in individual behaviours to be detected. By entering the data directly into a computer we are now able to store the frequency and duration of each behaviour as well as the sequence of behaviours. It will then be possible to determine whether a detailed analysis of drug effects on the patterning of social behaviours will prove a useful addition to the social interaction test
Authors
Publication
Journal: New England Journal of Medicine
October/31/2001
Abstract
BACKGROUND
The catecholamine-mediated hypermetabolic response to severe burns causes increased energy expenditure and muscle-protein catabolism. We hypothesized that blockade of beta-adrenergic stimulation with propranolol would decrease resting energy expenditure and muscle catabolism in patients with severe burns.
METHODS
Twenty-five children with acute and severe burns (more than 40 percent of total body-surface area) were studied in a randomized trial. Thirteen received oral propranolol for at least two weeks, and 12 served as untreated controls. The dose of propranolol was adjusted to decrease the resting heart rate by 20 percent from each patient's base-line value. Resting energy expenditure and skeletal-muscle protein kinetics were measured before and after two weeks of beta-blockade (or no therapy, in controls). Body composition was measured serially throughout hospitalization.
RESULTS
Patients in the control group and the propranolol group were similar with respect to age, weight, percentage of total body-surface area burned, percentage of body-surface area with third-degree burns, and length of time from injury to metabolic study. Beta-blockade decreased the heart rates and resting energy expenditure in the propranolol group, both as compared with the base-line values (P<0.001 and P=0.01, respectively) and as compared with the values in the control group (P=0.03 and P=0.001, respectively). The net muscle-protein balance increased by 82 percent over base-line values in the propranolol group (P=0.002), whereas it decreased by 27 percent in the control group (P not significant). The fat-free mass, as measured by whole-body potassium scanning, did not change substantially in the propranolol group, whereas it decreased by a mean (+/-SE) of 9+/-2 percent in the control group (P=0.003).
CONCLUSIONS
In children with burns, treatment with propranolol during hospitalization attenuates hypermetabolism and reverses muscle-protein catabolism.
Publication
Journal: New England Journal of Medicine
May/11/1994
Abstract
BACKGROUND
The aortic root enlarges progressively in Marfan's syndrome, and this enlargement is associated with aortic regurgitation and dissection. Long-term treatment with beta-adrenergic blockade, by reducing the impulse (i.e., the rate of pressure change in the aortic root) of left ventricular ejection and the heart rate, may protect the aortic root.
METHODS
We conducted an open-label, randomized trial of propranolol in adolescent and adult patients with classic Marfan's syndrome (32 treated and 38 untreated [control] patients). Aortic-root dimensions and clinical end points (aortic regurgitation, aortic dissection, cardiovascular surgery, congestive heart failure, and death) were monitored for an average of 9.3 years in the control group and 10.7 years in the treatment group. All 70 patients were included in the analysis according to the intention-to-treat principle.
RESULTS
The dose of propranolol was individualized; the mean (+/- SE) dose was 212 +/- 68 mg per day. The mean slope of the regression line for the aortic-root dimensions, which reflect the rate of dilatation, was significantly lower in the treatment group than in the control group (0.023 vs. 0.084 per year, P < 0.001). Clinical end points were reached in five patients in the treatment group and nine in the control group. The Kaplan-Meier survival curve for the treatment group differed significantly from that for the control group during the middle years of the trial and remained better for the treatment group throughout the study.
CONCLUSIONS
Prophylactic beta-adrenergic blockade is effective in slowing the rate of aortic dilatation and reducing the development of aortic complications in some patients with Marfan's syndrome.
Publication
Journal: Journal of Clinical Investigation
February/10/1974
Abstract
Selective release of inflammatory materials from leukocyte lysosomes is reduced by compounds which increase cyclic 3',5'-adenosine monophosphate (cAMP) levels in suspensions of human leukocytes and is augmented by agents which increase cyclic 3',5'-guanosine monophosphate (cGMP) levels in these cell suspensions. Lysosomal enzymes are released in the absence of phagocytosis when cytochalasin B (5 mug/ml) converts polymorphonuclear leukocytes (PMN) to secretory cells: lysosomes merge directly with the plasma membrane upon encounter of PMN with zymosan, and cells selectively extrude substantial proportions of lysosomal, but not cytoplasmic enzymes. beta-Adrenergic stimulation of human leukocytes produced a dose-related reduction in beta-glucuronidase release (blocked by 10(-6) M propranolol) whereas alpha-adrenergic stimulation (phenylephrine plus propranolol) was ineffective. In contrast, the cholinergic agonist carbamylcholine chloride enhanced enzyme secretion, an effect blocked by 10(-6) M atropine. Incubation of cells with exogenous cAMP or with agents that increase endogenous cAMP levels (prostaglandin E1, histamine, isoproterenol, and cholera enterotoxin) reduced extrusion of lysosomal enzymes; in contrast, exogenous cGMP and carbamylcholine chloride (which increases endogenous cGMP levels), increased beta-glucuronidase release. Whereas colchicine (5 x 10(-4) M), a drug which impairs microtubule integrity, reduced selective enzyme release, deuterium oxide, which favors microtubule assembly, enhanced selective release of lyosomal enzymes. The data suggest that granule movement and acid hydrolase release from leukocyte lysosomes requires intact microtubules and may be modulated by adrenergic and cholinergic agents which appear to provoke changes in concentrations of cyclic nucleotides.
Publication
Journal: Science
October/18/2011
Abstract
Systemic immunosuppression has been associated with stroke for many years, but the underlying mechanisms are poorly understood. In this study, we demonstrated that stroke induced profound behavioral changes in hepatic invariant NKT (iNKT) cells in mice. Unexpectedly, these effects were mediated by a noradrenergic neurotransmitter rather than a CD1d ligand or other well-characterized danger signals. Blockade of this innervation was protective in wild-type mice after stroke but had no effect in mice deficient in iNKT cells. Selective immunomodulation of iNKT cells with a specific activator (α-galactosylceramide) promoted proinflammatory cytokine production and prevented infections after stroke. Our results therefore identify a molecular mechanism that leads to immunosuppression after stroke and suggest an attractive potential therapeutic alternative to antibiotics, namely, immunomodulation of iNKT cells to prevent stroke-associated infections.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/3/2013
Abstract
Across a variety of adverse life circumstances, such as social isolation and low socioeconomic status, mammalian immune cells have been found to show a conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes. The present study examines whether such effects might stem in part from the selective up-regulation of a subpopulation of immature proinflammatory monocytes (Ly-6c(high) in mice, CD16(-) in humans) within the circulating leukocyte pool. Transcriptome representation analyses showed relative expansion of the immature proinflammatory monocyte transcriptome in peripheral blood mononuclear cells from people subject to chronic social stress (low socioeconomic status) and mice subject to repeated social defeat. Cellular dissection of the mouse peripheral blood mononuclear cell transcriptome confirmed these results, and promoter-based bioinformatic analyses indicated increased activity of transcription factors involved in early myeloid lineage differentiation and proinflammatory effector function (PU.1, NF-κB, EGR1, MZF1, NRF2). Analysis of bone marrow hematopoiesis confirmed increased myelopoietic output of Ly-6c(high) monocytes and Ly-6c(intermediate) granulocytes in mice subject to repeated social defeat, and these effects were blocked by pharmacologic antagonists of β-adrenoreceptors and the myelopoietic growth factor GM-CSF. These results suggest that sympathetic nervous system-induced up-regulation of myelopoiesis mediates the proinflammatory component of the leukocyte CTRA dynamic and may contribute to the increased risk of inflammation-related disease associated with adverse social conditions.
Publication
Journal: New England Journal of Medicine
April/20/1981
Abstract
We studied the influence of cimetidine on liver blood flow in eight normal subjects. Cimetidine acutely reduced liver blood flow during fasting by almost 25 per cent, as measured by indocyanine green clearance. Chronic cimetidine therapy (300 mg four times daily for seven days) reduced the flow by 33 per cent, as measured over eight hours by calculating the relative disposition of oral and intravenous propranolol. In addition to reducing the clearance of intravenous propranolol by decreasing live blood flow, cimetidine also inhibited the metabolism of oral propranolol and thereby further reduced elimination. The reduction in clearance of oral propranolol correlated positively (r = 0.87, P less than 0.05) with the average steady-state concentration of plasma cimetidine, suggesting that the inhibition of drug metabolism by cimetidine is dose related. Pulse rates at rest were markedly lower after propranolol plus cimetidine than after propranolol alone. The reduction in liver blood flow produced by cimetidine has important therapeutic implications for patients with alterations in liver and gastrointestinal blood flow and when drugs are used whose hepatic elimination depends on liver blood flow.
Publication
Journal: Science
February/3/2002
Abstract
Protein kinase D (PKD) is a cytosolic serine-threonine kinase that binds to the trans-Golgi network (TGN) and regulates the fission of transport carriers specifically destined to the cell surface. PKD was found to bind diacylglycerol (DAG), and this binding was necessary for its recruitment to the TGN. Reducing cellular levels of DAG inhibited PKD recruitment and blocked protein transport from the TGN to the cell surface. Thus, a DAG-dependent, PKD-mediated signaling regulates the formation of transport carriers from the TGN in mammalian cells.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/14/2006
Abstract
Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of long-term memories for emotionally arousing experiences but not that for less arousing or neutral information. However, previous studies have not determined the basis of such arousal-induced selectivity. Here we report the finding that endogenous noradrenergic activation of the basolateral complex of the amygdala (BLA) induced by emotional arousal is essential in enabling glucocorticoid memory enhancement. Corticosterone administered immediately after object recognition training enhanced 24-h memory of naïve male rats but not that of rats previously habituated to the training context in order to reduce novelty-induced emotional arousal. The beta-adrenoceptor antagonist propranolol administered either systemically or into the BLA blocked the corticosterone-induced memory enhancement. Further, in habituated rats, corticosterone activated BLA neurons, as assessed by phosphorylated cAMP response element binding (pCREB) immunoreactivity levels, and enhanced memory only when norepinephrine release was stimulated by administration of the alpha(2)-adrenoceptor antagonist yohimbine. These findings strongly suggest that synergistic actions of glucocorticoids and emotional arousal-induced noradrenergic activation of the BLA constitute a neural mechanism by which glucocorticoids may selectively enhance memory consolidation for emotionally arousing experiences.
Publication
Journal: Physiological Reviews
May/1/1984
Publication
Journal: New England Journal of Medicine
January/8/1973
Publication
Journal: British Medical Journal
January/30/1974
Abstract
Evidence for vagal denervation of the heart as a feature of diabetic autonomic neuropathy has been obtained by monitoring beat-to-beat variation in heart rate. Nine diabetics with autonomic neuropathy were assessed; each showed a marked reduction or absence of beat-to-beat variation in comparison with controls. Beat-to-beat variation in normal subjects is abolished by parasympathetic blockade but unaffected by sympathetic blockade. These findings suggest that spontaneous vagal denervation of the heart was present in the cases studied. Measurement of beat-to-beat variation provides a simple test whereby cases of autonomic neuropathy can be screened for cardiac involvement.
Publication
Journal: New England Journal of Medicine
May/16/1972
Publication
Journal: Clinical Pharmacology and Therapeutics
September/24/1979
Abstract
The effect of age on sensitivity to both isoproterenol and propranolol has been investigated in 27 male volunteers aged 21 to 73 yr. The dose of isoproterenol (given as a rapid intravenous injection) required to increase the resting heart rate by 25 bpm (I25) increased with age. The I25 was repeated during an intravenous infusion of propranolol and the dose ratio (I25 after propranolol divided by the control I25) determined. This was related to the concentration of free propranolol in plasma. It was found that the effectiveness of any given free concentration diminished progressively with age. These data are consistent with a diminished responsiveness of the beta-adrenoceptor to both agonist and antagonist drugs with advancing years.
Publication
Journal: Circulation Research
July/29/1985
Abstract
Catecholamines may be one of the molecular signals linking increased circulatory demand to myocardial hypertrophy, and I have found previously that norepinephrine stimulates hypertrophy of cultured neonatal rat heart muscle cells through an alpha 1-adrenergic receptor. Since catecholamine stimulation of contractility is believed to be under beta-adrenergic control, I asked whether these cultured heart cells had dual pathways regulating growth and contractility through alpha- and beta-adrenergic receptors, respectively. I examined the effect of adrenergic agents on hypertrophy and beating of myocytes in serum-free cultures. Hypertrophy was defined as an increase in myocyte surface area and in cell protein content, measured by a radioisotopic method, and chronotropic activity was examined visually. Norepinephrine and epinephrine were equipotent stimulants of hypertrophy and beating, increasing cell protein and area 1.5- to 2-fold, and the proportion of beating cells from 5% or less to 95%. Response maxima occurred 24-48 hours after exposure, and EC50 were 20-200 nM. Studies with other agonists (phenylephrine, methoxamine, clonidine, isoproterenol, dopamine) and antagonists (prazosin, terazosin, yohimbine, propranolol, betaxolol, ICI 118,551) indicated that hypertrophy was mediated through an alpha 1-adrenergic receptor, whereas the induction of beating required both alpha 1- and beta 1-receptor activation. Hypertrophied cells with minimal beating were produced by alpha-stimulation, alone. In contrast, alpha-plus beta-stimulation in the presence of cycloheximide to inhibit protein synthesis resulted in maximum beating but no hypertrophy. These findings imply that growth and beating can be regulated independently through separate cellular pathways.
Authors
Publication
Journal: Neuroscience
January/10/2006
Abstract
Proinflammatory cytokines act at receptors in the CNS to alter physiological and behavioral responses. Exposure to stressors increases both peripheral and central proinflammatory cytokines, yet the mechanism(s) of induction remain unknown. Experiments here examined the role of catecholamines in the in vivo induction of proinflammatory cytokines following tailshock stress. Rats were pretreated i.p. with 2.0 mg/kg prazosin (alpha1-adrenoceptor antagonist), 10.0 mg/kg propranolol (beta-adrenoceptor antagonist), or 5.0 mg/kg labetalol (alpha1- and beta-adrenoceptor antagonist) 30 min prior to tailshock exposure and plasma interleukin-1beta (IL-1beta) and IL-6, along with tissue interleukin-1beta from the hypothalamus, hippocampus, and pituitary were measured immediately following stressor termination. Prazosin attenuated stress-induced plasma IL-1beta and IL-6, but had no effect on tissue IL-1beta levels, while propranolol attenuated plasma IL-6 and blocked tissue IL-1beta elevation, and labetalol, which cannot cross the blood-brain barrier, attenuated plasma IL-1beta and IL-6, blocked pituitary IL-1beta, but had no effect on central tissue IL-1beta levels. Furthermore, administration of 50.0 mg/kg N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, a neurotoxin that lesions neural projections from the locus coeruleus, prevented stress-induced elevation in hippocampal IL-1beta, a region highly innervated by the locus coeruleus, but had no effect on hypothalamic IL-1beta, a region that receives few locus coeruleus projections. Finally, i.p. injection of 5.0 mg/kg isoproterenol (beta-adrenoceptor agonist) was sufficient to induce circulating IL-1 and IL-6, and tissue IL-1beta. These data suggest catecholamines play an important role in the induction of stress-induced proinflammatory cytokines and that beta-adrenoceptors are critical for tissue IL-1beta induction, while both alpha- and beta-adrenoceptors contribute to the induction of plasma cytokines.
load more...