Multiple Sclerosis, Relapsing-Remitting
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(5K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: New England Journal of Medicine
November/15/2000
Abstract
BACKGROUND
The influence of the patterns of onset of multiple sclerosis and relapses of the disease on the time course of irreversible disability is controversial.
METHODS
In 1844 patients with multiple sclerosis who were followed for a mean (+/- SD) of 11 +/- 10 years, we determined the time of the clinical onset of the disease, the initial course (relapsing-remitting or progressive) and the subsequent course (relapsing-remitting, secondary progressive, or primary progressive), the times of relapses, the time to the onset of irreversible disability, and the time course of progressive, irreversible disability. We used three scores on the Kurtzke Disability Status Scale (range, 0 to 10, with higher scores indicating more severe disability) as measures of the severity and progression of disability: a score of 4 (limited walking ability but able to walk for more than 500 m without aid or rest), a score of 6 (ability to walk with unilateral support no more than 100 m without rest), and a score of 7 (ability to walk no more than 10 m without rest while leaning against a wall or holding onto furniture for support). We used Kaplan-Meier analyses to determine the influence of relapses on the time to the onset of irreversible disability.
RESULTS
The median times from the onset of multiple sclerosis to the assignment of a score of 4, a score of 6, and a score of 7 on the disability scale were longer among the 1562 patients with a relapsing-remitting onset of disease (11.4, 23.1, and 33.1 years, respectively) than among the 282 patients who had progressive disease from the onset (0.0, 7.1, and 13.4 years, respectively; P<0.001 for all comparisons). In contrast, the times from the assignment of a score of 4 to a score of 6 were similar in the two groups (5.7 and 5.4 years, P=0.74). The time course of progressive, irreversible disease among patients with the primary progressive type of multiple sclerosis was not affected by the presence or absence of superimposed relapses.
CONCLUSIONS
Among patients with multiple sclerosis, relapses do not significantly influence the progression of irreversible disability.
Publication
Journal: New England Journal of Medicine
March/6/2006
Abstract
BACKGROUND
Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients.
METHODS
We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI.
RESULTS
Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000).
CONCLUSIONS
A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known.
Publication
Journal: Journal of Experimental Medicine
July/15/2012
Abstract
B cells have paradoxical roles in autoimmunity, exerting both pathogenic and protective effects. Pathogenesis may be antibody independent, as B cell depletion therapy (BCDT) leads to amelioration of disease irrespective of autoantibody ablation. However, the mechanisms of pathogenesis are poorly understood. We demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6-secreting pathogenic B cells. B cells from mice with experimental autoimmune encephalomyelitis (EAE) secreted elevated levels of IL-6 compared with B cells from naive controls, and mice with a B cell-specific IL-6 deficiency showed less severe disease than mice with wild-type B cells. Moreover, BCDT ameliorated EAE only in mice with IL-6-sufficient B cells. This mechanism of pathogenesis may also operate in multiple sclerosis (MS) because B cells from MS patients produced more IL-6 than B cells from healthy controls, and this abnormality was normalized with B cell reconstitution after Rituximab treatment. This suggests that BCDT improved disease progression, at least partly, by eliminating IL-6-producing B cells in MS patients. Taking these data together, we conclude that IL-6 secretion is a major mechanism of B cell-driven pathogenesis in T cell-mediated autoimmune disease such as EAE and MS.
Publication
Journal: The Lancet
December/6/2011
Abstract
BACKGROUND
B lymphocytes are implicated in the pathogenesis of multiple sclerosis. We aimed to assess efficacy and safety of two dose regimens of the humanised anti-CD20 monoclonal antibody ocrelizumab in patients with relapsing-remitting multiple sclerosis.
METHODS
We did a multicentre, randomised, parallel, double-blind, placebo-controlled study involving 79 centres in 20 countries. Patients aged 18-55 years with relapsing-remitting multiple sclerosis were randomly assigned (1:1:1:1) via an interactive voice response system to receive either placebo, low-dose (600 mg) or high-dose (2000 mg) ocrelizumab in two doses on days 1 and 15, or intramuscular interferon beta-1a (30 μg) once a week. The randomisation list was not disclosed to the study centres, monitors, project statisticians or to the project team at Roche. All groups were double blinded to group assignment, except the interferon beta-1a group who were rater masked. At week 24, patients in the initial placebo, 600 mg ocrelizumab, and interferon beta-1a groups received ocrelizumab 600 mg; the 2000 mg group received 1000 mg. Our primary endpoint was the total number of gadolinium-enhancing lesions (GEL) and T1-weighted MRI at weeks 12, 16, 20, and 24. Analyses were done on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT00676715.
RESULTS
218 (99%) of the 220 randomised patients received at least one dose of ocrelizumab, 204 (93%) completed 24 weeks of the study and 196 (89%) completed 48 weeks. In the intention-to-treat population of 218 patients, at week 24, the number of gadolinium-enhancing lesions was 89% (95% CI 68-97; p<0·0001) lower in the 600 mg ocrelizumab group than in the placebo group, and 96% (89-99; p<0·0001) lower in the 2000 mg group. In exploratory analyses, both 600 mg and 2000 mg ocrelizumab groups were better than interferon beta-1a for GEL reduction. We noted serious adverse events in two of 54 (4%; 95% CI 3·0-4·4) patients in the placebo group, one of 55 (2%; 1·3-2·3) in the 600 mg ocrelizumab group, three of 55 (5%; 4·6-6·3) in the 2000 mg group, and two of 54 (4%; 3·0-4·4) in the interferon beta-1a group.
CONCLUSIONS
The similarly pronounced effects of B-cell depletion with both ocrelizumab doses on MRI and relapse-related outcomes support a role for B-cells in disease pathogenesis and warrant further assessment in large, long-term trials.
BACKGROUND
F Hoffmann-La Roche Ltd, Biogen Idec Inc.
Publication
Journal: Annals of Neurology
November/12/2008
Abstract
OBJECTIVE
To determine gray matter (GM) atrophy rates in multiple sclerosis (MS) patients at all stages of disease, and to identify predictors and clinical correlates of GM atrophy.
METHODS
MS patients and healthy control subjects were observed over 4 years with standardized magnetic resonance imaging (MRI) and neurological examinations. Whole-brain, GM, and white matter atrophy rates were calculated. Subjects were categorized by disease status and disability progression to determine the clinical significance of atrophy. MRI predictors of atrophy were determined through multiple regression.
RESULTS
Subjects included 17 healthy control subjects, 7 patients with clinically isolated syndromes, 36 patients with relapsing-remitting MS (RRMS), and 27 patients with secondary progressive MS (SPMS). Expressed as fold increase from control subjects, GM atrophy rate increased with disease stage, from 3.4-fold normal in clinically isolated syndromes patients converting to RRMS to 14-fold normal in SPMS. In contrast, white matter atrophy rates were constant across all MS disease stages at approximately 3-fold normal. GM atrophy correlated with disability. MRI measures of focal and diffuse tissue damage accounted for 62% of the variance in GM atrophy in RRMS, but there were no significant predictors of GM atrophy in SPMS.
CONCLUSIONS
Gray matter tissue damage dominates the pathological process as MS progresses, and underlies neurological disabillity. Imaging correlates of gray matter atrophy indicate that mechanisms differ in RRMS and SPMS. These findings demonstrate the clinical relevance of gray matter atrophy in MS, and underscore the need to understand its causes.
Publication
Journal: New England Journal of Medicine
February/6/2017
Abstract
B cells influence the pathogenesis of multiple sclerosis. Ocrelizumab is a humanized monoclonal antibody that selectively depletes CD20+ B cells.
In two identical phase 3 trials, we randomly assigned 821 and 835 patients with relapsing multiple sclerosis to receive intravenous ocrelizumab at a dose of 600 mg every 24 weeks or subcutaneous interferon beta-1a at a dose of 44 μg three times weekly for 96 weeks. The primary end point was the annualized relapse rate.
The annualized relapse rate was lower with ocrelizumab than with interferon beta-1a in trial 1 (0.16 vs. 0.29; 46% lower rate with ocrelizumab; P<0.001) and in trial 2 (0.16 vs. 0.29; 47% lower rate; P<0.001). In prespecified pooled analyses, the percentage of patients with disability progression confirmed at 12 weeks was significantly lower with ocrelizumab than with interferon beta-1a (9.1% vs. 13.6%; hazard ratio, 0.60; 95% confidence interval [CI], 0.45 to 0.81; P<0.001), as was the percentage of patients with disability progression confirmed at 24 weeks (6.9% vs. 10.5%; hazard ratio, 0.60; 95% CI, 0.43 to 0.84; P=0.003). The mean number of gadolinium-enhancing lesions per T1-weighted magnetic resonance scan was 0.02 with ocrelizumab versus 0.29 with interferon beta-1a in trial 1 (94% lower number of lesions with ocrelizumab, P<0.001) and 0.02 versus 0.42 in trial 2 (95% lower number of lesions, P<0.001). The change in the Multiple Sclerosis Functional Composite score (a composite measure of walking speed, upper-limb movements, and cognition; for this z score, negative values indicate worsening and positive values indicate improvement) significantly favored ocrelizumab over interferon beta-1a in trial 2 (0.28 vs. 0.17, P=0.004) but not in trial 1 (0.21 vs. 0.17, P=0.33). Infusion-related reactions occurred in 34.3% of the patients treated with ocrelizumab. Serious infection occurred in 1.3% of the patients treated with ocrelizumab and in 2.9% of those treated with interferon beta-1a. Neoplasms occurred in 0.5% of the patients treated with ocrelizumab and in 0.2% of those treated with interferon beta-1a.
Among patients with relapsing multiple sclerosis, ocrelizumab was associated with lower rates of disease activity and progression than interferon beta-1a over a period of 96 weeks. Larger and longer studies of the safety of ocrelizumab are required. (Funded by F. Hoffmann-La Roche; OPERA I and II ClinicalTrials.gov numbers, NCT01247324 and NCT01412333 , respectively.).
Publication
Journal: Brain
June/23/2009
Abstract
Although Vitamin D is best known as a modulator of calcium homeostasis, it also has immune modulating potential. A protective effect of Vitamin D on multiple sclerosis is supported by the reduced risk associated with sun exposure and use of Vitamin D supplements. Moreover, high circulating levels of Vitamin D have been associated with lower risk of multiple sclerosis. In this study, we measured 1,25 (OH)(2) Vitamin D and 25 (OH) Vitamin D levels in multiple sclerosis patients separated into different clinical subgroups according to disease status. In addition, direct effects of 1,25 (OH)(2) Vitamin D on ex vivo CD4+ T cells and myelin-peptide specific T cell lines were investigated to gain more insight into putative regulatory mechanisms in the disease pathogenesis. One hundred and thirty-two Hispanic patients with clinically definite multiple sclerosis were studied, 58 with relapsing remitting multiple sclerosis during remission, 34 during relapse and 40 primary progressive multiple sclerosis cases. Sixty healthy individuals matched with respect to place of residence, race/ethnicity, age and gender served as controls. Levels of 25(OH)D(3) and 1,25(OH)(2)D(3), measured by ELISA were significantly lower in relapsing-remitting patients than in controls. In addition, levels in patients suffering relapse were lower than during remissions. In contrast, primary progressive patients showed similar values to controls. Proliferation of both freshly isolated CD4+ T cells and MBP-specific T cells was significantly inhibited by 1,25(OH)(2)D(3). Moreover, activated Vitamin D enhanced the development of IL-10 producing cells, and reduced the number of IL-6 and IL-17 secreting cells. Notably, Vitamin D receptor expression was induced by 1,25(OH)(2)D(3) in both activated and resting cells. Interestingly, T cells were able to metabolize 25(OH)D(3) into biologically active 1,25(OH)(2)D(3), since T cells express alpha1-hydroxylase constitutively. Finally, 1,25(OH)(2)D(3) also increased the expression and biological activity of indoleamine 2,3-dioxygenase, mediating significant increase in the number of CD4+CD25+ T regulatory cells. Collectively, these data suggest that 1,25(OH)(2)D(3) plays an important role in T cell homeostasis during the course of multiple sclerosis, thus making correction of its deficiency may be useful during treatment of the disease.
Publication
Journal: Annals of Neurology
October/28/2009
Abstract
OBJECTIVE
There is substantial evidence supporting the role of interferon (IFN)-gamma-producing T helper (T(H)) 1 and interleukin (IL)-17-expressing T(H)17 lymphocytes in multiple sclerosis (MS) and its animal model, experimental allergic encephalomyelitis (EAE). However, to date little is known about the potential cooperative interplay between these 2 cytokines. In the current study, we sought to evaluate the frequency of IFN-gamma-expressing T(H)17 lymphocytes in MS and EAE, and study their recruitment into the central nervous system (CNS).
METHODS
Human T(H)17 lymphocytes were expanded in vitro from the blood of healthy controls and relapsing MS patients using IL-23. Immune cell migration to the CNS was assessed in vitro with primary cultures of human blood-brain barrier (BBB)-derived endothelial cells, and in vivo in EAE mice.
RESULTS
We demonstrate that in response to IL-23, human memory lymphocytes expand into a T(H)17 phenotype, with a subpopulation of cells simultaneously expressing IFN-gamma and IL-17. We note that lymphocytes obtained from the blood of relapsing MS patients have an increased propensity to expand into IFN-gamma-producing T(H)17 cells and identify numerous T lymphocytes coexpressing IL-17 and IFN-gamma in brain tissue of MS patients. We also find lymphocytes expressing both the T(H)1- and the T(H)17-associated transcription factors ROR gamma t and T-bet, in situ and in vitro. We further provide in vitro and in vivo evidence that IFN-gamma(+) T(H)17 lymphocytes preferentially cross the human BBB and accumulate in the CNS of mice during the effector phase of EAE.
CONCLUSIONS
Our data underscore the involvement of IFN-gamma(+) T(H)17 lymphocytes in the pathology of MS and EAE and their preferential recruitment into the CNS during inflammatory events.
Publication
Journal: Journal of Neurology, Neurosurgery and Psychiatry
April/19/2009
Abstract
BACKGROUND
The extracranial venous outflow routes in clinically defined multiple sclerosis (CDMS) have not previously been investigated.
METHODS
Sixty-five patients affected by CDMS, and 235 controls composed, respectively, of healthy subjects, healthy subjects older than CDMS patients, patients affected by other neurological diseases and older controls not affected by neurological diseases but scheduled for venography (HAV-C) blindly underwent a combined transcranial and extracranial colour-Doppler high-resolution examination (TCCS-ECD) aimed at detecting at least two of five parameters of anomalous venous outflow. According to the TCCS-ECD screening, patients and HAV-C further underwent selective venography of the azygous and jugular venous system with venous pressure measurement.
RESULTS
CDMS and TCCS-ECD venous outflow anomalies were dramatically associated (OR 43, 95% CI 29 to 65, p<0.0001). Subsequently, venography demonstrated in CDMS, and not in controls, the presence of multiple severe extracranial stenosis, affecting the principal cerebrospinal venous segments; this provides a picture of chronic cerebrospinal venous insufficiency (CCSVI) with four different patterns of distribution of stenosis and substitute circle. Moreover, relapsing-remitting and secondary progressive courses were associated with CCSVI patterns significantly different from those of primary progressive (p<0.0001). Finally, the pressure gradient measured across the venous stenosies was slightly but significantly higher.
CONCLUSIONS
CDMS is strongly associated with CCSVI, a scenario that has not previously been described, characterised by abnormal venous haemodynamics determined by extracranial multiple venous strictures of unknown origin. The location of venous obstructions plays a key role in determining the clinical course of the disease.
Publication
Journal: Annals of Neurology
April/18/2001
Abstract
Two prior double-blind, placebo-controlled, randomized trials demonstrated that glatiramer acetate (GA) reduces relapse rates in patients with relapsing remitting multiple sclerosis (RRMS). This study was designed to determine the effect, onset, and durability of any effect of GA on disease activity monitored with magnetic resonance imaging (MRI) in patients with RRMS. Two hundred thirty-nine eligible patients were randomized to receive either 20 mg GA (n = 119) or placebo (n = 120) by daily subcutaneous injection. Eligibility required one or more relapses in the 2 years before entry and at least one enhancing lesion on a screening MRI. The study was a randomized, double-blind, placebo-controlled phase during which all patients studied underwent monthly MRI scans and clinical assessments over 9 months. The primary outcome measure was the total number of enhancing lesions on T1-weighted images. Secondary outcome measures included the proportion of patients with enhancing lesions, the number of new enhancing lesions and change in their volume; the number of new lesions detected on T2-weighted images and change in their volume, and the change in volume of hypointense lesions seen on unenhanced T1-weighted images. Clinical measures of disease activity were also evaluated. The active treatment and placebo groups were comparable at entry for all demographic, clinical, and MRI variables. Treatment with GA showed a significant reduction in the total number of enhancing lesions compared with placebo (-10.8, 95% confidence interval -18.0 to -3.7; p = 0.003). Consistent differences favoring treatment with GA were seen for almost all secondary end points examined: number of new enhancing lesions (p < 0.003), monthly change in the volume of enhancing lesions (p = 0.01), and change in volume (p = 0.006) and number of new lesions seen on T2-weighted images (p < 0.003). The relapse rate was also significantly reduced by 33% for GA-treated patients (p = 0.012). All effects increased over time. Glatiramer acetate significantly reduced MRI-measured disease activity and burden.
Publication
Journal: The Lancet Neurology
July/7/2014
Abstract
BACKGROUND
Fingolimod has shown reductions in clinical and MRI disease activity in patients with relapsing-remitting multiple sclerosis. We further assessed the efficacy and safety of fingolimod in such patients.
METHODS
We did this placebo-controlled, double-blind phase 3 study predominantly in the USA (101 of 117 centres). Using a computer-generated sequence, we randomly allocated eligible patients-those aged 18-55 years with relapsing-remitting multiple sclerosis-to receive fingolimod 0·5 mg, fingolimod 1·25 mg, or placebo orally once daily (1:1:1; stratified by study centre). On Nov 12, 2009, all patients assigned to fingolimod 1·25 mg were switched to the 0·5 mg dose in a blinded manner after a review of data from other phase 3 trials and recommendation from the data and safety monitoring board, but were analysed as being in the 1·25 mg group in the primary outcome analysis. Our primary endpoint was annualised relapse rate at month 24, analysed by intention to treat. Secondary endpoints included percentage brain volume change (PBVC) from baseline and time-to-disability-progression confirmed at 3 months. This trial is registered with ClinicalTrilals.gov, number NCT00355134.
RESULTS
Between June 30, 2006, and March 4, 2009, we enrolled and randomly allocated 1083 patients: 370 to fingolimod 1·25 mg, 358 to fingolimod 0·5 mg, and 355 to placebo. Mean annualised relapse rate was 0·40 (95% CI 0·34-0·48) in patients given placebo and 0·21 (0·17-0·25) in patients given fingolimod 0·5 mg: rate ratio 0·52 (95% CI 0·40-0·66; p<0·0001), corresponding to a reduction of 48% with fingolimod 0·5 mg versus placebo. Mean PBVC was -0·86 (SD 1·22) for fingolimod 0·5 mg versus -1·28 (1·50) for placebo (treatment difference -0·41, 95% CI -0·62 to -0·20; p=0·0002). We recorded no statistically significant between-group difference in confirmed disability progression (hazard rate 0·83 with fingolimod 0·5 mg vs placebo; 95% CI 0·61-1·12; p=0·227). Fingolimod 0·5 mg caused more of the following adverse events versus placebo: lymphopenia (27 [8%] patients vs 0 patients), increased alanine aminotransferase (29 [8%] vs six [2%]), herpes zoster infection (nine [3%] vs three [1%]), hypertension (32 [9%] vs 11 [3%]), first-dose bradycardia (five [1%] vs one [<0·5%]), and first-degree atrioventricular block (17 [5%] vs seven [2%]). 53 (15%) of 358 patients given fingolimod 0·5 mg and 45 (13%) of 355 patients given placebo had serious adverse events over 24 months, which included basal-cell carcinoma (ten [3%] patients vs two [1%] patients), macular oedema (three [1%] vs two [1%]), infections (11 [3%] vs four [1%]), and neoplasms (13 [4%] vs eight [2%]).
CONCLUSIONS
Our findings expand knowledge of the safety profile of fingolimod and strengthen evidence for its beneficial effects on relapse rates in patients with relapsing-remitting multiple sclerosis. We saw no effect of fingolimod on disability progression. Our findings substantiate the beneficial profile of fingolimod as a disease-modifying agent in the management of patients with relapsing-remitting multiple sclerosis.
BACKGROUND
Novartis Pharma AG.
Publication
Journal: New England Journal of Medicine
February/18/2010
Abstract
BACKGROUND
Cladribine provides immunomodulation through selective targeting of lymphocyte subtypes. We report the results of a 96-week phase 3 trial of a short-course oral tablet therapy in patients with relapsing-remitting multiple sclerosis.
METHODS
We randomly assigned 1326 patients in an approximate 1:1:1 ratio to receive one of two cumulative doses of cladribine tablets (either 3.5 mg or 5.25 mg per kilogram of body weight) or matching placebo, given in two or four short courses for the first 48 weeks, then in two short courses starting at week 48 and week 52 (for a total of 8 to 20 days per year). The primary end point was the rate of relapse at 96 weeks.
RESULTS
Among patients who received cladribine tablets (either 3.5 mg or 5.25 mg per kilogram), there was a significantly lower annualized rate of relapse than in the placebo group (0.14 and 0.15, respectively, vs. 0.33; P<0.001 for both comparisons), a higher relapse-free rate (79.7% and 78.9%, respectively, vs. 60.9%; P<0.001 for both comparisons), a lower risk of 3-month sustained progression of disability (hazard ratio for the 3.5-mg group, 0.67; 95% confidence interval [CI], 0.48 to 0.93; P=0.02; and hazard ratio for the 5.25-mg group, 0.69; 95% CI, 0.49 to 0.96; P=0.03), and significant reductions in the brain lesion count on magnetic resonance imaging (MRI) (P<0.001 for all comparisons). Adverse events that were more frequent in the cladribine groups included lymphocytopenia (21.6% in the 3.5-mg group and 31.5% in the 5.25-mg group, vs. 1.8%) and herpes zoster (8 patients and 12 patients, respectively, vs. no patients).
CONCLUSIONS
Treatment with cladribine tablets significantly reduced relapse rates, the risk of disability progression, and MRI measures of disease activity at 96 weeks. The benefits need to be weighed against the risks. (ClinicalTrials.gov number, NCT00213135.)
Publication
Journal: Brain
April/30/2008
Abstract
Clinically isolated syndromes (CIS), such as optic neuritis, brainstem or spinal cord syndromes are frequently the first clinical presentations of multiple sclerosis. However, not all CIS patients develop multiple sclerosis and in those who do, disability is highly variable. In previous follow-up studies, brain lesions on T2-weighted MRI are associated with increased risk of multiple sclerosis and to an extent disability. We evaluated the longitudinal relationships between the MRI lesions and clinical course over a period of 20 years. CIS patients were recruited between 1984 and 1987 and previously followed up after 1, 5, 10 and 14 years. Of the 140 subjects who were initially recruited with a CIS for a baseline MRI study, we followed up 107 patients after a mean of 20.2 years (range 18-27.7). Multiple sclerosis was diagnosed as clinically definite on clinical grounds only and disability determined using the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) score. Clinically definite multiple sclerosis developed in 67 out of 107 (63%) overall: 60 out of 73 (82%) with abnormal and 7 out of 34 (21%) with normal baseline MRI. Multiple sclerosis was still relapsing-remitting in 39 (58%)--including 26 (39%) with a 'benign' course (EDSS < or = 3)--whilst 28 (42%) had developed secondary progression. T2 lesion volume at all time-points correlated moderately with 20-year EDSS (r(s) values 0.48 to 0.67; P < 0.001) and MSFC z-score [r(s) values (-0.50) to (-0.61); P < 0.001]. In those developing multiple sclerosis, a concurrent correlation of change in T2 lesion volume with change in EDSS was most evident in years 0-5 (r(s) = 0.69, P < 0.001). The estimated rate of lesion growth over 20 years was 0.80 cm3/year in those who retained a relapsing remitting multiple sclerosis course, and 2.89 cm3/year in those who developed secondary progressive multiple sclerosis, a difference of 2.09 cm3/year (95% CI: 0.77, 2.96; P < 0.001). This study extends previous follow-up of CIS patients and sheds new light on how the lesions evolve according to the natural history. Baseline MRI findings are predictive for development of clinically definite multiple sclerosis. Lesion volume and its change at earlier time points are correlated with disability after 20 years. Lesion volume increases for at least 20 years in relapse-onset multiple sclerosis and the rate of lesion growth is three times higher in those who develop secondary progressive than in those who remain relapsing remitting multiple sclerosis.
Publication
Journal: Annals of Neurology
April/17/2008
Abstract
We evaluated the safety, tolerability, pharmacodynamics, and activity of B-cell depletion with rituximab in patients with relapsing-remitting multiple sclerosis, receiving two courses of rituximab 6 months apart, and followed for a total of 72 weeks. No serious adverse events were noted; events were limited to mild-to-moderate infusion-associated events, which tended to decrease with subsequent infusions. Infections were also mild or moderate, and none led to withdrawal. Fewer new gadolinium-enhancing or T2 lesions were seen starting from week 4 and through week 72. An apparent reduction in relapses was also observed over the 72 weeks compared with the year before therapy.
Publication
Journal: Neurology
August/1/2001
Abstract
BACKGROUND
The PRISMS study demonstrated significant clinical and MRI benefit at 2 years for interferon-beta-1a, 22 and 44 mcg thrice weekly (tiw), compared with placebo in relapsing-remitting MS. Years 3 and 4 extension study results are reported.
METHODS
Patients initially receiving placebo were randomized to blinded interferon-beta-1a, 22 or 44 mcg tiw (n = 172; crossover group); others continued blinded treatment with their originally assigned dose, 22 mcg (Rx22 group) or 44 mcg (Rx44 group) tiw (n = 167 per group). Patients had 3- to 6-month clinical and annual MRI assessments.
RESULTS
Relapse rates for 4 years were 1.02 (crossover), 0.80 (Rx22, p < 0.001), and 0.72 (Rx44, p < 0.001); the dose effect approached significance (p = 0.069; risk ratio, 0.88; 95% CI, 0.76-1.01). Crossover groups showed reductions in relapse count, MRI activity, and lesion-burden accumulation with interferon-beta-1a compared with their placebo period (p < 0.001 both doses). Time to sustained disability progression was prolonged by 18 months in the Rx44 group compared with the crossover group (p = 0.047). Rx22 and Rx44 reduced new T2 lesion number and lesion burden compared with crossover (p < 0.001); Rx44 was superior to Rx22 on several clinical and MRI outcomes. Persistent neutralizing antibodies developed in 14.3% (Rx44) and 23.7% (Rx22) of patients and were associated with reduced efficacy.
CONCLUSIONS
Clinical and MRI benefit continued for both doses up to 4 years, with evidence of dose response. Outcomes were consistently better for patients treated for 4 years than for patients in crossover groups. Efficacy decreased with neutralizing antibody formation.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: The Lancet
November/9/2008
Abstract
BACKGROUND
Oral fumarate (BG00012) might have dual anti-inflammatory and neuroprotective effects. Our aim was to assess the efficacy and safety of BG00012 in patients with relapsing-remitting multiple sclerosis.
METHODS
257 patients, aged 18-55 years, with relapsing-remitting multiple sclerosis were randomly assigned to receive 120 mg once daily (n=64), 120 mg three times daily (n=64), or 240 mg three times daily (n=64) BG00012, or placebo (n=65) for 24 weeks. During an extension period of 24 weeks for safety assessment, patients treated with placebo received BG00012 240 mg three times daily. The primary endpoint was total number of new gadolinium enhancing (GdE) lesions on brain MRI scans at weeks 12, 16, 20, and 24. Additional endpoints included cumulative number of new GdE lesions (weeks 4-24), new or enlarging T2-hyperintense lesions, new T1-hypointense lesions at week 24, and annualised relapse rate. Analysis was done on the efficacy-evaluable population. Safety and tolerability were also assessed. This study is registered with ClinicalTrials.gov, number NCT00168701.
RESULTS
Treatment with BG00012 240 mg three times daily reduced by 69% the mean total number of new GdE lesions from week 12 to 24 compared with placebo (1.4 vs 4.5, p<0.0001). It also reduced number of new or enlarging T2-hyperintense (p=0.0006) and new T1-hypointense (p=0.014) lesions compared with placebo. BG00012 reduced annualised relapse rate by 32% (0.44 vs 0.65 for placebo; p=0.272). Adverse events more common in patients given BG00012 than in those given placebo included abdominal pain, flushing, and hot flush. Dose-related adverse events in patients on BG00012 were headache, fatigue, and feeling hot.
CONCLUSIONS
The anti-inflammatory effects and favourable safety profile of BG00012 warrant further long-term phase III studies in large patient groups.
Publication
Journal: The Lancet
November/11/2009
Abstract
BACKGROUND
Glatiramer acetate, approved for the treatment of relapsing-remitting multiple sclerosis, reduces relapses and disease activity and burden monitored by MRI. We assessed the efficacy of early treatment with glatiramer acetate in delaying onset of clinically definite multiple sclerosis.
METHODS
In this randomised, double-blind trial, undertaken in 80 sites in 16 countries, 481 patients presenting with a clinically isolated syndrome with unifocal manifestation, and two or more T2-weighted brain lesions measuring 6 mm or more, were randomly assigned to receive either subcutaneous glatiramer acetate 20 mg per day (n=243) or placebo (n=238) for up to 36 months, unless they converted to clinically definite multiple sclerosis. The randomisation scheme used SAS-based blocks stratified by centre, and patients and all personnel were masked to treatment assignment. The primary endpoint was time to clinically definite multiple sclerosis, based on a second clinical attack. Analysis was by intention to treat. A preplanned interim analysis was done for data accumulated from 81% of the 3-year study exposure. This study was registered with ClinicalTrials.gov, number NCT00666224.
RESULTS
All randomly assigned participants were analysed for the primary outcome. Glatiramer acetate reduced the risk of developing clinically definite multiple sclerosis by 45% compared with placebo (hazard ratio 0.55, 95% CI 0.40-0.77; p=0.0005). The time for 25% of patients to convert to clinically definite disease was prolonged by 115%, from 336 days for placebo to 722 days for glatiramer acetate. The most common adverse events in the glatiramer acetate group were injection-site reactions (135 [56%] glatiramer acetate vs 56 [24%] placebo) and immediate post-injection reactions (47 [19%] vs 12 [5%]).
CONCLUSIONS
Early treatment with glatiramer acetate is efficacious in delaying conversion to clinically definite multiple sclerosis in patients presenting with clinically isolated syndrome and brain lesions detected by MRI.
BACKGROUND
Teva Pharmaceutical Industries, Israel.
Publication
Journal: Nature Medicine
August/17/2011
Abstract
CD4(+)CD25(high)CD127(low/-) forkhead box p3 (Foxp3)(+) regulatory T cells (T(reg) cells) possess functional plasticity. Here we describe a higher frequency of T helper type 1 (T(H)1)-like, interferon-γ (IFN-γ)-secreting Foxp3(+) T cells in untreated subjects with relapsing remitting multiple sclerosis (RRMS) as compared to healthy control individuals. In subjects treated with IFN-β, the frequency of IFN-γ(+)Foxp3(+) T cells is similar to that in healthy control subjects. In vitro, human T(reg) cells from healthy subjects acquire a T(H)1-like phenotype when cultured in the presence of interleukin-12 (IL-12). T(H)1-like T(reg) cells show reduced suppressive activity in vitro, which can partially be reversed by IFN-γ-specific antibodies or by removal of IL-12.
Publication
Journal: The Lancet
October/28/2018
Abstract
Multiple sclerosis continues to be a challenging and disabling condition but there is now greater understanding of the underlying genetic and environmental factors that drive the condition, including low vitamin D levels, cigarette smoking, and obesity. Early and accurate diagnosis is crucial and is supported by diagnostic criteria, incorporating imaging and spinal fluid abnormalities for those presenting with a clinically isolated syndrome. Importantly, there is an extensive therapeutic armamentarium, both oral and by infusion, for those with the relapsing remitting form of the disease. Careful consideration is required when choosing the correct treatment, balancing the side-effect profile with efficacy and escalating as clinically appropriate. This move towards more personalised medicine is supported by a clinical guideline published in 2018. Finally, a comprehensive management programme is strongly recommended for all patients with multiple sclerosis, enhancing health-related quality of life through advocating wellness, addressing aggravating factors, and managing comorbidities. The greatest remaining challenge for multiple sclerosis is the development of treatments incorporating neuroprotection and remyelination to treat and ultimately prevent the disabling, progressive forms of the condition.
Publication
Journal: Journal of Neuroimmunology
January/21/2007
Abstract
Effects of B cell depletion by rituximab, a monoclonal antibody to CD20, were studied in patients with relapsing MS that had not responded optimally to standard immunomodulatory therapies. Flow cytometry demonstrated reduced cerebrospinal fluid (CSF) B cells and T cells in most patients at 6 months post-treatment. ELISAs demonstrated modest reductions in serum antibodies to myelin oligodendrocyte glycoprotein and myelin basic protein in some subjects. Beta-interferon neutralizing antibodies were reduced in three subjects, but developed anew after treatment in three others, suggesting caution in considering rituximab as a means to eliminate NABs. In summary, rituximab depleted B cells from CSF at 24 weeks after initial treatment, and this B cell depletion was associated with a reduction in CSF T cells as well.
Publication
Journal: Brain
March/14/2006
Abstract
Multiple sclerosis can follow very different patterns of evolution and variable rates of disability accumulation. This raises the issue whether it represents one or several distinct diseases. We assessed demographic and clinical characteristics in 1844 patients with multiple sclerosis that we categorized according to the classification of Lublin and Reingold (1996) into 1066 (58%) relapsing-remitting, 496 (27%) secondary progressive, 109 (6%) progressive relapsing and 173 (9%) primary progressive cases of multiple sclerosis. Relapsing-remitting and secondary progressive cases shared similar age at disease onset (median = 28.7 versus 29.5 years; P = 0.21), initial symptoms of the relapsing-remitting phase, degree of recovery from the first neurological episode, and time from the first to the second episode. By contrast, disease duration was twice as long in secondary progressive than in relapsing-remitting cases (mean +/- SD = 17.6 +/- 9.6 versus 8.7 +/- 8.6 years; P < 0.001). Progressive relapsing and primary progressive cases were essentially similar in their clinical characteristics. In patients experiencing a progressive course, median age at onset of progressive phase was similar in secondary progressive cases and in cases who were progressive from onset (39.1 versus 40.1 years; P = 0.47). The proportion of cases with superimposed relapses during progression was approximately 40% in both categories. Finally, the 1562 patients with an exacerbating-remitting initial course and the 282 patients with a progressive initial course of the disease were essentially similar with respect to the time course of disability accumulation from assignment to a given disability score, and the age at assignment of disability landmarks. These observational data suggest that the clinical phenotype and course of multiple sclerosis are age dependent. Relapsing-remitting disease can be regarded as multiple sclerosis in which insufficient time has elapsed for the conversion to secondary progression; secondary progressive forms as relapsing-remitting multiple sclerosis that has 'grown older'; and progressive from onset cases as multiple sclerosis 'amputated' from the usual preceding relapsing-remitting phase. Times to reach disability milestones, and ages at which these landmarks are reached, follow a predefined schedule not obviously influenced by relapses, whenever they may occur, or by the initial course of the disease, whatever its phenotype. This leads to a unifying concept of the disease in which primary and secondary progression might be regarded as essentially similar. From the clinical and statistical positions, multiple sclerosis might be considered as one disease with different clinical phenotypes rather than an entity encompassing several distinct diseases-the position of complexity rather than true heterogeneity.
Publication
Journal: The Lancet Neurology
October/2/2008
Abstract
BACKGROUND
Repeated subcutaneous injections of a monoclonal antibody against the p40 subunit of interleukins 12 and 23, ustekinumab, were used to treat patients with relapsing-remitting multiple sclerosis (RRMS) to assess the drug's safety, efficacy, and pharmacokinetics.
METHODS
In this phase II, multicentre, randomised, double-blind, placebo-controlled study, 249 patients with RRMS, aged 18-65 years, were eligible to be assigned equally (by a central randomisation procedure based on study site and presence or absence of gadolinium-enhancing T1-weighted lesions at baseline) to one of five groups that received placebo or four different ustekinumab dosages at weeks 0, 1, 2, 3, 7, 11, 15, and 19. Ustekinumab doses were 27 mg, 90 mg q8w, 90 mg, or 180 mg; the 90 mg q8w dosage group received placebo substitute at weeks 7 and 15. The primary endpoint was the cumulative number of new gadolinium-enhancing T1-weighted lesions on serial cranial MRI through week 23. Patients were followed up through week 37. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00207727.
RESULTS
From August, 2004, to December, 2006, 249 patients underwent randomisation (49 for placebo; 50 for each ustekinumab group). Ustekinumab treatment did not show a significant reduction in the primary endpoint for any dosage groups versus placebo. At week 37, adverse events occurred in 38 (78%) placebo-treated patients and 170 (85%) ustekinumab-treated patients, with infections most commonly reported. Serious adverse events occurred in one (2%) placebo-treated patient and six (3%) ustekinumab-treated patients. Malignant diseases were reported in two patients shortly after the initiation of ustekinumab treatment; both patients were withdrawn from the trial and given appropriate treatment, which resulted in complete remission. No serious infections, cardiovascular events, or exacerbation of demyelinating events occurred. A dose-dependent increase in serum concentrations of ustekinumab was recorded.
CONCLUSIONS
Ustekinumab is generally well tolerated but does not show efficacy in reducing the cumulative number of gadolinium-enhancing T1-weighted lesions in multiple sclerosis.
Publication
Journal: Brain
July/19/2010
Abstract
The relationship of relapses to long-term disability in multiple sclerosis is uncertain. Relapse reduction is a common therapeutic target but clinical trials have shown dissociation between relapse suppression and disability accumulation. We investigated relationships between relapses and disability progression for outcomes of requiring assistance to walk, being bedridden and dying from multiple sclerosis [Disability Status Scale 6, 8, 10] by analysing 28 000 patient-years of evolution in 806-bout onset patients from the London Ontario natural history cohort. Having previously shown no effect of relapse frequency among progressive multiple sclerosis subtypes, here we examined these measures in the pre-progressive or relapsing-remitting phase. Survival was compared among groups stratified by (i) early relapses--number of attacks during the first 2 years of multiple sclerosis; (ii) length of first inter-attack interval; (iii) interval between onset and Disability Status Scale 3 (moderate disability); (iv) number of attacks from the third year of disease up to onset of progression; and (v) during the entire relapsing-remitting phase. Early clinical features can predict hard disability outcomes. Frequent relapses in the first 2 years and shorter first inter-attack intervals predicted shorter times to reach hard disability endpoints. Attack frequencies, in the first 2 years, of 1 versus>>or=3, gave differences of 7.6, 12.8 and 20.3 years in times from disease onset to Disability Status Scale 6, 8 and 10, respectively. Time to Disability Status Scale 3 highly and independently predicted time to Disability Status Scale 6, 8 and 10. In contrast, neither total number of relapsing-remitting phase attacks nor of relapses experienced during the relapsing-remitting phase after the second year up to onset of progression showed a deleterious effect on times from disease onset, from progression onset and from Disability Status Scale 3 to these hard endpoints. The failure of a regulatory mechanism tied to neurodegeneration is suggested. Relapse frequency beyond Year 2 does not appear to predict the key outcome of secondary progression or times to Disability Status Scale 6, 8 or 10, highlighting two distinct disease phases related to late outcome. These appear to be separated by a watershed within the relapsing-remitting phase, just a few years after clinical onset. Higher early relapse frequencies and shorter first inter-attack intervals herald more rapid deterioration via interaction with the neurodegeneration characterizing secondary progression. They increase the probability of its occurrence, its latency and influence--to a lesser degree--its slope. The prevention or delay of the progressive phase of the disease is implicated as a key therapeutic target in relapsing-remitting patients.
Publication
Journal: Annals of Neurology
April/5/2007
Abstract
OBJECTIVE
To assess whether parasite infection is correlated with a reduced number of exacerbations and altered immune reactivity in multiple sclerosis (MS).
METHODS
A prospective, double-cohort study was performed to assess the clinical course and radiological findings in 12 MS patients presenting associated eosinophilia. All patients presented parasitic infections with positive stool specimens. In all parasite-infected MS patients, the eosinophilia was not present during the 2 previous years. Eosinophil counts were monitored at 3- to 6-month intervals. When counts became elevated, patients were enrolled in the study. Interleukin (IL)-4, IL-10, IL-12, transforming growth factor (TGF)-beta, and interferon-gamma production by myelin basic protein-specific peripheral blood mononuclear cells were studied using enzyme-linked immunospot (ELISPOT). FoxP3 and Smad7 expression were studied by reverse-transcriptase polymerase chain reaction.
RESULTS
During a 4.6-year follow-up period, parasite-infected MS patients showed a significantly lower number of exacerbations, minimal variation in disability scores, as well as fewer magnetic resonance imaging changes when compared with uninfected MS patients. Furthermore, myelin basic protein-specific responses in peripheral blood showed a significant increase in IL-10 and TGF-beta and a decrease in IL-12 and interferon-gamma-secreting cells in infected MS patients compared with noninfected patients. Myelin basic protein-specific T cells cloned from infected subjects were characterized by the absence of IL-2 and IL-4 production, but high IL-10 and/or TGF-beta secretion, showing a cytokine profile similar to the T-cell subsets Tr1 and Th3. Moreover, cloning frequency of CD4+CD25+ FoxP3+ T cells was substantially increased in infected patients compared with uninfected MS subjects. Finally, Smad7 messenger RNA was not detected in T cells from infected MS patients secreting TGF-beta.
CONCLUSIONS
Increased production of IL-10 and TGF-beta, together with induction of CD25+CD4+ FoxP3+ T cells, suggests that regulatory T cells induced during parasite infections can alter the course of MS.
load more...