Diabetes Mellitus, Type 2
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(118K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Diabetologia
November/20/1985
Abstract
The steady-state basal plasma glucose and insulin concentrations are determined by their interaction in a feedback loop. A computer-solved model has been used to predict the homeostatic concentrations which arise from varying degrees beta-cell deficiency and insulin resistance. Comparison of a patient's fasting values with the model's predictions allows a quantitative assessment of the contributions of insulin resistance and deficient beta-cell function to the fasting hyperglycaemia (homeostasis model assessment, HOMA). The accuracy and precision of the estimate have been determined by comparison with independent measures of insulin resistance and beta-cell function using hyperglycaemic and euglycaemic clamps and an intravenous glucose tolerance test. The estimate of insulin resistance obtained by homeostasis model assessment correlated with estimates obtained by use of the euglycaemic clamp (Rs = 0.88, p less than 0.0001), the fasting insulin concentration (Rs = 0.81, p less than 0.0001), and the hyperglycaemic clamp, (Rs = 0.69, p less than 0.01). There was no correlation with any aspect of insulin-receptor binding. The estimate of deficient beta-cell function obtained by homeostasis model assessment correlated with that derived using the hyperglycaemic clamp (Rs = 0.61, p less than 0.01) and with the estimate from the intravenous glucose tolerance test (Rs = 0.64, p less than 0.05). The low precision of the estimates from the model (coefficients of variation: 31% for insulin resistance and 32% for beta-cell deficit) limits its use, but the correlation of the model's estimates with patient data accords with the hypothesis that basal glucose and insulin interactions are largely determined by a simple feed back loop.
Publication
Journal: The New England journal of medicine
February/19/2002
Abstract
BACKGROUND
Type 2 diabetes affects approximately 8 percent of adults in the United States. Some risk factors--elevated plasma glucose concentrations in the fasting state and after an oral glucose load, overweight, and a sedentary lifestyle--are potentially reversible. We hypothesized that modifying these factors with a lifestyle-intervention program or the administration of metformin would prevent or delay the development of diabetes.
METHODS
We randomly assigned 3234 nondiabetic persons with elevated fasting and post-load plasma glucose concentrations to placebo, metformin (850 mg twice daily), or a lifestyle-modification program with the goals of at least a 7 percent weight loss and at least 150 minutes of physical activity per week. The mean age of the participants was 51 years, and the mean body-mass index (the weight in kilograms divided by the square of the height in meters) was 34.0; 68 percent were women, and 45 percent were members of minority groups.
RESULTS
The average follow-up was 2.8 years. The incidence of diabetes was 11.0, 7.8, and 4.8 cases per 100 person-years in the placebo, metformin, and lifestyle groups, respectively. The lifestyle intervention reduced the incidence by 58 percent (95 percent confidence interval, 48 to 66 percent) and metformin by 31 percent (95 percent confidence interval, 17 to 43 percent), as compared with placebo; the lifestyle intervention was significantly more effective than metformin. To prevent one case of diabetes during a period of three years, 6.9 persons would have to participate in the lifestyle-intervention program, and 13.9 would have to receive metformin.
CONCLUSIONS
Lifestyle changes and treatment with metformin both reduced the incidence of diabetes in persons at high risk. The lifestyle intervention was more effective than metformin.
Publication
Journal: Lancet (London, England)
September/30/1998
Abstract
BACKGROUND
Improved blood-glucose control decreases the progression of diabetic microvascular disease, but the effect on macrovascular complications is unknown. There is concern that sulphonylureas may increase cardiovascular mortality in patients with type 2 diabetes and that high insulin concentrations may enhance atheroma formation. We compared the effects of intensive blood-glucose control with either sulphonylurea or insulin and conventional treatment on the risk of microvascular and macrovascular complications in patients with type 2 diabetes in a randomised controlled trial.
METHODS
3867 newly diagnosed patients with type 2 diabetes, median age 54 years (IQR 48-60 years), who after 3 months' diet treatment had a mean of two fasting plasma glucose (FPG) concentrations of 6.1-15.0 mmol/L were randomly assigned intensive policy with a sulphonylurea (chlorpropamide, glibenclamide, or glipizide) or with insulin, or conventional policy with diet. The aim in the intensive group was FPG less than 6 mmol/L. In the conventional group, the aim was the best achievable FPG with diet alone; drugs were added only if there were hyperglycaemic symptoms or FPG greater than 15 mmol/L. Three aggregate endpoints were used to assess differences between conventional and intensive treatment: any diabetes-related endpoint (sudden death, death from hyperglycaemia or hypoglycaemia, fatal or non-fatal myocardial infarction, angina, heart failure, stroke, renal failure, amputation [of at least one digit], vitreous haemorrhage, retinopathy requiring photocoagulation, blindness in one eye, or cataract extraction); diabetes-related death (death from myocardial infarction, stroke, peripheral vascular disease, renal disease, hyperglycaemia or hypoglycaemia, and sudden death); all-cause mortality. Single clinical endpoints and surrogate subclinical endpoints were also assessed. All analyses were by intention to treat and frequency of hypoglycaemia was also analysed by actual therapy.
RESULTS
Over 10 years, haemoglobin A1c (HbA1c) was 7.0% (6.2-8.2) in the intensive group compared with 7.9% (6.9-8.8) in the conventional group--an 11% reduction. There was no difference in HbA1c among agents in the intensive group. Compared with the conventional group, the risk in the intensive group was 12% lower (95% CI 1-21, p=0.029) for any diabetes-related endpoint; 10% lower (-11 to 27, p=0.34) for any diabetes-related death; and 6% lower (-10 to 20, p=0.44) for all-cause mortality. Most of the risk reduction in the any diabetes-related aggregate endpoint was due to a 25% risk reduction (7-40, p=0.0099) in microvascular endpoints, including the need for retinal photocoagulation. There was no difference for any of the three aggregate endpoints between the three intensive agents (chlorpropamide, glibenclamide, or insulin). Patients in the intensive group had more hypoglycaemic episodes than those in the conventional group on both types of analysis (both p<0.0001). The rates of major hypoglycaemic episodes per year were 0.7% with conventional treatment, 1.0% with chlorpropamide, 1.4% with glibenclamide, and 1.8% with insulin. Weight gain was significantly higher in the intensive group (mean 2.9 kg) than in the conventional group (p<0.001), and patients assigned insulin had a greater gain in weight (4.0 kg) than those assigned chlorpropamide (2.6 kg) or glibenclamide (1.7 kg).
CONCLUSIONS
Intensive blood-glucose control by either sulphonylureas or insulin substantially decreases the risk of microvascular complications, but not macrovascular disease, in patients with type 2 diabetes.(ABSTRACT TRUNCATED)
Publication
Journal: Diabetes care
November/15/2004
Abstract
OBJECTIVE
The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030.
METHODS
Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries.
RESULTS
The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age.
CONCLUSIONS
These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
Publication
Journal: Circulation
March/1/2006
Publication
Journal: Nature genetics
July/31/2003
Abstract
DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1alpha and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.
Publication
Journal: Nature
January/10/2007
Abstract
Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.
Publication
Journal: The New England journal of medicine
May/9/2001
Abstract
BACKGROUND
Type 2 diabetes mellitus is increasingly common, primarily because of increases in the prevalence of a sedentary lifestyle and obesity. Whether type 2 diabetes can be prevented by interventions that affect the lifestyles of subjects at high risk for the disease is not known.
METHODS
We randomly assigned 522 middle-aged, overweight subjects (172 men and 350 women; mean age, 55 years; mean body-mass index [weight in kilograms divided by the square of the height in meters], 31) with impaired glucose tolerance to either the intervention group or the control group. Each subject in the intervention group received individualized counseling aimed at reducing weight, total intake of fat, and intake of saturated fat and increasing intake of fiber and physical activity. An oral glucose-tolerance test was performed annually; the diagnosis of diabetes was confirmed by a second test. The mean duration of follow-up was 3.2 years.
RESULTS
The mean (+/-SD) amount of weight lost between base line and the end of year 1 was 4.2+/-5.1 kg in the intervention group and 0.8+/-3.7 kg in the control group; the net loss by the end of year 2 was 3.5+/-5.5 kg in the intervention group and 0.8+/-4.4 kg in the control group (P<0.001 for both comparisons between the groups). The cumulative incidence of diabetes after four years was 11 percent (95 percent confidence interval, 6 to 15 percent) in the intervention group and 23 percent (95 percent confidence interval, 17 to 29 percent) in the control group. During the trial, the risk of diabetes was reduced by 58 percent (P<0.001) in the intervention group. The reduction in the incidence of diabetes was directly associated with changes in lifestyle.
CONCLUSIONS
Type 2 diabetes can be prevented by changes in the lifestyles of high-risk subjects.
Publication
Journal: Diabetes
December/26/1988
Abstract
Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
Authors
Publication
Journal: The New England journal of medicine
June/29/2008
Abstract
BACKGROUND
Epidemiologic studies have shown a relationship between glycated hemoglobin levels and cardiovascular events in patients with type 2 diabetes. We investigated whether intensive therapy to target normal glycated hemoglobin levels would reduce cardiovascular events in patients with type 2 diabetes who had either established cardiovascular disease or additional cardiovascular risk factors.
METHODS
In this randomized study, 10,251 patients (mean age, 62.2 years) with a median glycated hemoglobin level of 8.1% were assigned to receive intensive therapy (targeting a glycated hemoglobin level below 6.0%) or standard therapy (targeting a level from 7.0 to 7.9%). Of these patients, 38% were women, and 35% had had a previous cardiovascular event. The primary outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes. The finding of higher mortality in the intensive-therapy group led to a discontinuation of intensive therapy after a mean of 3.5 years of follow-up.
RESULTS
At 1 year, stable median glycated hemoglobin levels of 6.4% and 7.5% were achieved in the intensive-therapy group and the standard-therapy group, respectively. During follow-up, the primary outcome occurred in 352 patients in the intensive-therapy group, as compared with 371 in the standard-therapy group (hazard ratio, 0.90; 95% confidence interval [CI], 0.78 to 1.04; P=0.16). At the same time, 257 patients in the intensive-therapy group died, as compared with 203 patients in the standard-therapy group (hazard ratio, 1.22; 95% CI, 1.01 to 1.46; P=0.04). Hypoglycemia requiring assistance and weight gain of more than 10 kg were more frequent in the intensive-therapy group (P<0.001).
CONCLUSIONS
As compared with standard therapy, the use of intensive therapy to target normal glycated hemoglobin levels for 3.5 years increased mortality and did not significantly reduce major cardiovascular events. These findings identify a previously unrecognized harm of intensive glucose lowering in high-risk patients with type 2 diabetes. (ClinicalTrials.gov number, NCT00000620.)
Publication
Journal: The New England journal of medicine
June/29/2008
Abstract
BACKGROUND
In patients with type 2 diabetes, the effects of intensive glucose control on vascular outcomes remain uncertain.
METHODS
We randomly assigned 11,140 patients with type 2 diabetes to undergo either standard glucose control or intensive glucose control, defined as the use of gliclazide (modified release) plus other drugs as required to achieve a glycated hemoglobin value of 6.5% or less. Primary end points were composites of major macrovascular events (death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke) and major microvascular events (new or worsening nephropathy or retinopathy), assessed both jointly and separately.
RESULTS
After a median of 5 years of follow-up, the mean glycated hemoglobin level was lower in the intensive-control group (6.5%) than in the standard-control group (7.3%). Intensive control reduced the incidence of combined major macrovascular and microvascular events (18.1%, vs. 20.0% with standard control; hazard ratio, 0.90; 95% confidence interval [CI], 0.82 to 0.98; P=0.01), as well as that of major microvascular events (9.4% vs. 10.9%; hazard ratio, 0.86; 95% CI, 0.77 to 0.97; P=0.01), primarily because of a reduction in the incidence of nephropathy (4.1% vs. 5.2%; hazard ratio, 0.79; 95% CI, 0.66 to 0.93; P=0.006), with no significant effect on retinopathy (P=0.50). There were no significant effects of the type of glucose control on major macrovascular events (hazard ratio with intensive control, 0.94; 95% CI, 0.84 to 1.06; P=0.32), death from cardiovascular causes (hazard ratio with intensive control, 0.88; 95% CI, 0.74 to 1.04; P=0.12), or death from any cause (hazard ratio with intensive control, 0.93; 95% CI, 0.83 to 1.06; P=0.28). Severe hypoglycemia, although uncommon, was more common in the intensive-control group (2.7%, vs. 1.5% in the standard-control group; hazard ratio, 1.86; 95% CI, 1.42 to 2.40; P<0.001).
CONCLUSIONS
A strategy of intensive glucose control, involving gliclazide (modified release) and other drugs as required, that lowered the glycated hemoglobin value to 6.5% yielded a 10% relative reduction in the combined outcome of major macrovascular and microvascular events, primarily as a consequence of a 21% relative reduction in nephropathy. (ClinicalTrials.gov number, NCT00145925.)
Publication
Journal: BMJ (Clinical research ed.)
September/11/2000
Abstract
OBJECTIVE
To determine the relation between exposure to glycaemia over time and the risk of macrovascular or microvascular complications in patients with type 2 diabetes.
METHODS
Prospective observational study.
METHODS
23 hospital based clinics in England, Scotland, and Northern Ireland.
METHODS
4585 white, Asian Indian, and Afro-Caribbean UKPDS patients, whether randomised or not to treatment, were included in analyses of incidence; of these, 3642 were included in analyses of relative risk.
METHODS
Primary predefined aggregate clinical outcomes: any end point or deaths related to diabetes and all cause mortality. Secondary aggregate outcomes: myocardial infarction, stroke, amputation (including death from peripheral vascular disease), and microvascular disease (predominantly retinal photo-coagulation). Single end points: non-fatal heart failure and cataract extraction. Risk reduction associated with a 1% reduction in updated mean HbA(1c) adjusted for possible confounders at diagnosis of diabetes.
RESULTS
The incidence of clinical complications was significantly associated with glycaemia. Each 1% reduction in updated mean HbA(1c) was associated with reductions in risk of 21% for any end point related to diabetes (95% confidence interval 17% to 24%, P<0.0001), 21% for deaths related to diabetes (15% to 27%, P<0.0001), 14% for myocardial infarction (8% to 21%, P<0.0001), and 37% for microvascular complications (33% to 41%, P<0.0001). No threshold of risk was observed for any end point.
CONCLUSIONS
In patients with type 2 diabetes the risk of diabetic complications was strongly associated with previous hyperglycaemia. Any reduction in HbA(1c) is likely to reduce the risk of complications, with the lowest risk being in those with HbA(1c) values in the normal range (<6.0%).
Publication
Journal: Science (New York, N.Y.)
July/4/2002
Abstract
Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.
Publication
Journal: The New England journal of medicine
October/27/2008
Abstract
BACKGROUND
During the United Kingdom Prospective Diabetes Study (UKPDS), patients with type 2 diabetes mellitus who received intensive glucose therapy had a lower risk of microvascular complications than did those receiving conventional dietary therapy. We conducted post-trial monitoring to determine whether this improved glucose control persisted and whether such therapy had a long-term effect on macrovascular outcomes.
METHODS
Of 5102 patients with newly diagnosed type 2 diabetes, 4209 were randomly assigned to receive either conventional therapy (dietary restriction) or intensive therapy (either sulfonylurea or insulin or, in overweight patients, metformin) for glucose control. In post-trial monitoring, 3277 patients were asked to attend annual UKPDS clinics for 5 years, but no attempts were made to maintain their previously assigned therapies. Annual questionnaires were used to follow patients who were unable to attend the clinics, and all patients in years 6 to 10 were assessed through questionnaires. We examined seven prespecified aggregate clinical outcomes from the UKPDS on an intention-to-treat basis, according to previous randomization categories.
RESULTS
Between-group differences in glycated hemoglobin levels were lost after the first year. In the sulfonylurea-insulin group, relative reductions in risk persisted at 10 years for any diabetes-related end point (9%, P=0.04) and microvascular disease (24%, P=0.001), and risk reductions for myocardial infarction (15%, P=0.01) and death from any cause (13%, P=0.007) emerged over time, as more events occurred. In the metformin group, significant risk reductions persisted for any diabetes-related end point (21%, P=0.01), myocardial infarction (33%, P=0.005), and death from any cause (27%, P=0.002).
CONCLUSIONS
Despite an early loss of glycemic differences, a continued reduction in microvascular risk and emergent risk reductions for myocardial infarction and death from any cause were observed during 10 years of post-trial follow-up. A continued benefit after metformin therapy was evident among overweight patients. (UKPDS 80; Current Controlled Trials number, ISRCTN75451837.)
Publication
Journal: Lancet (London, England)
September/30/1998
Abstract
BACKGROUND
In patients with type 2 diabetes, intensive blood-glucose control with insulin or sulphonylurea therapy decreases progression of microvascular disease and may also reduce the risk of heart attacks. This study investigated whether intensive glucose control with metformin has any specific advantage or disadvantage.
METHODS
Of 4075 patients recruited to UKPDS in 15 centres, 1704 overweight (>120% ideal bodyweight) patients with newly diagnosed type 2 diabetes, mean age 53 years, had raised fasting plasma glucose (FPG; 6.1-15.0 mmol/L) without hyperglycaemic symptoms after 3 months' initial diet. 753 were included in a randomised controlled trial, median duration 10.7 years, of conventional policy, primarily with diet alone (n=411) versus intensive blood-glucose control policy with metformin, aiming for FPG below 6 mmol/L (n=342). A secondary analysis compared the 342 patients allocated metformin with 951 overweight patients allocated intensive blood-glucose control with chlorpropamide (n=265), glibenclamide (n=277), or insulin (n=409). The primary outcome measures were aggregates of any diabetes-related clinical endpoint, diabetes-related death, and all-cause mortality. In a supplementary randomised controlled trial, 537 non-overweight and overweight patients, mean age 59 years, who were already on maximum sulphonylurea therapy but had raised FPG (6.1-15.0 mmol/L) were allocated continuing sulphonylurea therapy alone (n=269) or addition of metformin (n=268).
RESULTS
Median glycated haemoglobin (HbA1c) was 7.4% in the metformin group compared with 8.0% in the conventional group. Patients allocated metformin, compared with the conventional group, had risk reductions of 32% (95% CI 13-47, p=0.002) for any diabetes-related endpoint, 42% for diabetes-related death (9-63, p=0.017), and 36% for all-cause mortality (9-55, p=0.011). Among patients allocated intensive blood-glucose control, metformin showed a greater effect than chlorpropamide, glibenclamide, or insulin for any diabetes-related endpoint (p=0.0034), all-cause mortality (p=0.021), and stroke (p=0.032). Early addition of metformin in sulphonylurea-treated patients was associated with an increased risk of diabetes-related death (96% increased risk [95% CI 2-275], p=0.039) compared with continued sulphonylurea alone. A combined analysis of the main and supplementary studies showed fewer metformin-allocated patients having diabetes-related endpoints (risk reduction 19% [2-33], p=0.033). Epidemiological assessment of the possible association of death from diabetes-related causes with the concurrent therapy of diabetes in 4416 patients did not show an increased risk in diabetes-related death in patients treated with a combination of sulphonylurea and metformin (risk reduction 5% [-33 to 32], p=0.78).
CONCLUSIONS
Since intensive glucose control with metformin appears to decrease the risk of diabetes-related endpoints in overweight diabetic patients, and is associated with less weight gain and fewer hypoglycaemic attacks than are insulin and sulphonylureas, it may be the first-line pharmacological therapy of choice in these patients.
Publication
Journal: The Journal of clinical investigation
December/3/2001
Abstract
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
Publication
Journal: Science (New York, N.Y.)
May/29/2007
Abstract
Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes-susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.
Publication
Journal: Lancet (London, England)
October/11/2005
Publication
Journal: Cell research
December/4/2008
Abstract
Dysregulated expression of microRNAs (miRNAs) in various tissues has been associated with a variety of diseases, including cancers. Here we demonstrate that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses. The levels of miRNAs in serum are stable, reproducible, and consistent among individuals of the same species. Employing Solexa, we sequenced all serum miRNAs of healthy Chinese subjects and found over 100 and 91 serum miRNAs in male and female subjects, respectively. We also identified specific expression patterns of serum miRNAs for lung cancer, colorectal cancer, and diabetes, providing evidence that serum miRNAs contain fingerprints for various diseases. Two non-small cell lung cancer-specific serum miRNAs obtained by Solexa were further validated in an independent trial of 75 healthy donors and 152 cancer patients, using quantitative reverse transcription polymerase chain reaction assays. Through these analyses, we conclude that serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases.
Publication
Journal: The New England journal of medicine
July/29/1998
Abstract
BACKGROUND
Type 2 (non-insulin-dependent) diabetes is associated with a marked increase in the risk of coronary heart disease. It has been debated whether patients with diabetes who have not had myocardial infarctions should be treated as aggressively for cardiovascular risk factors as patients who have had myocardial infarctions.
METHODS
To address this issue, we compared the seven-year incidence of myocardial infarction (fatal and nonfatal) among 1373 nondiabetic subjects with the incidence among 1059 diabetic subjects, all from a Finnish population-based study.
RESULTS
The seven-year incidence rates of myocardial infarction in nondiabetic subjects with and without prior myocardial infarction at base line were 18.8 percent and 3.5 percent, respectively (P<0.001). The seven-year incidence rates of myocardial infarction in diabetic subjects with and without prior myocardial infarction at base line were 45.0 percent and 20.2 percent, respectively (P<0.001). The hazard ratio for death from coronary heart disease for diabetic subjects without prior myocardial infarction as compared with nondiabetic subjects with prior myocardial infarction was not significantly different from 1.0 (hazard ratio, 1.4; 95 percent confidence interval, 0.7 to 2.6) after adjustment for age and sex, suggesting similar risks of infarction in the two groups. After further adjustment for total cholesterol, hypertension, and smoking, this hazard ratio remained close to 1.0 (hazard ratio, 1.2; 95 percent confidence interval, 0.6 to 2.4).
CONCLUSIONS
Our data suggest that diabetic patients without previous myocardial infarction have as high a risk of myocardial infarction as nondiabetic patients with previous myocardial infarction. These data provide a rationale for treating cardiovascular risk factors in diabetic patients as aggressively as in nondiabetic patients with prior myocardial infarction.
Publication
Journal: Science (New York, N.Y.)
June/13/2007
Abstract
New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
Publication
Journal: BMJ (Clinical research ed.)
October/27/1998
Abstract
OBJECTIVE
To determine whether tight control of blood pressure prevents macrovascular and microvascular complications in patients with type 2 diabetes.
METHODS
Randomised controlled trial comparing tight control of blood pressure aiming at a blood pressure of <150/85 mm Hg (with the use of an angiotensin converting enzyme inhibitor captopril or a beta blocker atenolol as main treatment) with less tight control aiming at a blood pressure of <180/105 mm Hg.
METHODS
20 hospital based clinics in England, Scotland, and Northern Ireland.
METHODS
1148 hypertensive patients with type 2 diabetes (mean age 56, mean blood pressure at entry 160/94 mm Hg); 758 patients were allocated to tight control of blood pressure and 390 patients to less tight control with a median follow up of 8.4 years.
METHODS
Predefined clinical end points, fatal and non-fatal, related to diabetes, deaths related to diabetes, and all cause mortality. Surrogate measures of microvascular disease included urinary albumin excretion and retinal photography.
RESULTS
Mean blood pressure during follow up was significantly reduced in the group assigned tight blood pressure control (144/82 mm Hg) compared with the group assigned to less tight control (154/87 mm Hg) (P<0.0001). Reductions in risk in the group assigned to tight control compared with that assigned to less tight control were 24% in diabetes related end points (95% confidence interval 8% to 38%) (P=0.0046), 32% in deaths related to diabetes (6% to 51%) (P=0.019), 44% in strokes (11% to 65%) (P=0.013), and 37% in microvascular end points (11% to 56%) (P=0.0092), predominantly owing to a reduced risk of retinal photocoagulation. There was a non-significant reduction in all cause mortality. After nine years of follow up the group assigned to tight blood pressure control also had a 34% reduction in risk in the proportion of patients with deterioration of retinopathy by two steps (99% confidence interval 11% to 50%) (P=0.0004) and a 47% reduced risk (7% to 70%) (P=0.004) of deterioration in visual acuity by three lines of the early treatment of diabetic retinopathy study (ETDRS) chart. After nine years of follow up 29% of patients in the group assigned to tight control required three or more treatments to lower blood pressure to achieve target blood pressures.
CONCLUSIONS
Tight blood pressure control in patients with hypertension and type 2 diabetes achieves a clinically important reduction in the risk of deaths related to diabetes, complications related to diabetes, progression of diabetic retinopathy, and deterioration in visual acuity.
Publication
Journal: The New England journal of medicine
September/26/2001
Abstract
BACKGROUND
Diabetic nephropathy is the leading cause of end-stage renal disease. Interruption of the renin-angiotensin system slows the progression of renal disease in patients with type 1 diabetes, but similar data are not available for patients with type 2, the most common form of diabetes. We assessed the role of the angiotensin-II-receptor antagonist losartan in patients with type 2 diabetes and nephropathy.
METHODS
A total of 1513 patients were enrolled in this randomized, double-blind study comparing losartan (50 to 100 mg once daily) with placebo, both taken in addition to conventional antihypertensive treatment (calcium-channel antagonists, diuretics, alpha-blockers, beta-blockers, and centrally acting agents), for a mean of 3.4 years. The primary outcome was the composite of a doubling of the base-line serum creatinine concentration, end-stage renal disease, or death. Secondary end points included a composite of morbidity and mortality from cardiovascular causes, proteinuria, and the rate of progression of renal disease.
RESULTS
A total of 327 patients in the losartan group reached the primary end point, as compared with 359 in the placebo group (risk reduction, 16 percent; P=0.02). Losartan reduced the incidence of a doubling of the serum creatinine concentration (risk reduction, 25 percent; P=0.006) and end-stage renal disease (risk reduction, 28 percent; P=0.002) but had no effect on the rate of death. The benefit exceeded that attributable to changes in blood pressure. The composite of morbidity and mortality from cardiovascular causes was similar in the two groups, although the rate of first hospitalization for heart failure was significantly lower with losartan (risk reduction, 32 percent; P=0.005). The level of proteinuria declined by 35 percent with losartan (P<0.001 for the comparison with placebo).
CONCLUSIONS
Losartan conferred significant renal benefits in patients with type 2 diabetes and nephropathy, and it was generally well tolerated.
Publication
Journal: Science (New York, N.Y.)
June/13/2007
Abstract
Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.
load more...