Central University for Nationalities
Citations
All
Pubmeds
(568)
Pubmed
Journal: Bioresource technology
August/1/2012
Abstract

In order to increase the stability of thermophilic Thermomyces lanuginosus GH11 xylanase, TLX, a disulfide bridge Q1C-Q24C was introduced into the N-terminal region of the enzyme. The apparent temperature optimum shifted upwards at pH 6.5 by about 10°C to 75°C. The resistance to thermal inactivation also increased by about 10°C. The melting temperature measured by CD spectroscopy increased from 66 to 74°C. Therefore the N-terminal disulfide bridge increased both kinetic and thermodynamic stability almost equally. At pH 8 and 70°C, the disulfide bridge increased the enzyme half-life 20-fold in the presence of substrate. In contrast to the situation in acidic-neutral pH, the substrate decreased the thermostability of xylanases in alkaline pH. The upper limit for the performance of the disulfide bridge mutant at pH 9 was 75°C. This study showed that N-terminal disulfide bridges can stabilize even thermostable family GH11 xylanases.

Pubmed
Journal: Science (New York, N.Y.)
December/9/1996
Abstract

Large-scale synthesis of aligned carbon nanotubes was achieved by using a method based on chemical vapor deposition catalyzed by iron nanoparticles embedded in mesoporous silica. Scanning electron microscope images show that the nanotubes are approximately perpendicular to the surface of the silica and form an aligned array of isolated tubes with spacings between the tubes of about 100 nanometers. The tubes are up to about 50 micrometers long and well graphitized. The growth direction of the nanotubes may be controlled by the pores from which the nanotubes grow.

Authors
; ; ; ; ; +2 authors
Pubmed
Journal: PloS one
October/21/2015
Abstract

Mild traumatic brain injury (mTBI) is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI), we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL). We found increases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.

Pubmed
Journal: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
June/16/2010
Abstract

Cell to cell communication by biophotons has been demonstrated in plants, bacteria, animal neutrophil granulocytes and kidney cells. Whether such signal communication exists in neural cells is unclear. By developing a new biophoton detection method, called in situ biophoton autography (IBA), we have investigated biophotonic activities in rat spinal nerve roots in vitro. We found that different spectral light stimulation (infrared, red, yellow, blue, green and white) at one end of the spinal sensory or motor nerve roots resulted in a significant increase in the biophotonic activity at the other end. Such effects could be significantly inhibited by procaine (a regional anaesthetic for neural conduction block) or classic metabolic inhibitors, suggesting that light stimulation can generate biophotons that conduct along the neural fibers, probably as neural communication signals. The mechanism of biophotonic conduction along neural fibers may be mediated by protein-protein biophotonic interactions. This study may provide a better understanding of the fundamental mechanisms of neural communication, the functions of the nervous system, such as vision, learning and memory, as well as the mechanisms of human neurological diseases.

Pubmed
Journal: Protein & cell
January/5/2015
Abstract

Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

Pubmed
Journal: Journal of experimental botany
February/22/2015
Abstract

γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca(2+)-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca(2+) increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca(2+)-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca(2+)-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes.

Pubmed
Journal: Neuroscience bulletin
February/5/2012
Abstract

OBJECTIVE

The production of neurotoxic β-amyloid and the formation of hyperphosphorylated tau are thought to be critical steps contributing to the neuropathological mechanisms in Alzheimer's disease (AD). However, there remains an argument as to their importance in the onset of AD. Recent studies have shown that axonopathy is considered as an early stage of AD. However, the exact relationship between axonopathy and the origin and development of classic neuropathological changes such as senile plaques (SPs) and neurofibrillary tangles (NFTs) is unclear. The present study aimed to investigate this relationship.

METHODS

Postmortem tracing, combined with the immunohistochemical or immunofluorescence staining, was used to detect axonopathy and the formation of SPs and NFTs.

RESULTS

Axonal leakage-a novel type of axonopathy, was usually accompanied with the extensive swollen axons and varicosities, and was associated with the origin and development of Aβ plaques and hyperphosphorylated tau in the brains of AD patients.

CONCLUSIONS

Axonopathy, particularly axonal leakage, might be a key event in the initiation of the neuropathological processes in AD.

Pubmed
Journal: Journal of integrative plant biology
February/13/2012
Abstract

γ-Amino butyric acid (GABA) and proline play a crucial role in protecting plants during various environmental stresses. Their synthesis is from the common precursor glutamic acid, which is catalyzed by glutamate decarboxylase and Δ(1) -pyrroline-5-carboxylate synthetase respectively. However, the dominant pathway under water stress has not yet been established. To explore this, excised tobacco leaves were used to simulate a water-stress condition. The results showed GABA content was much higher than that of proline in leaves under water-deficit and non-water-deficit conditions. Specifically, the amount of GABA significantly increased compared to proline under continuous water loss for 16 h, indicating that GABA biosynthesis is the dominant pathway from glutamic acid metabolism under these conditions. Quantitative reverse transcription polymerase chain reaction and protein Western gel-blot analysis further confirmed this. To explore the function of GABA accumulation, a system producing superoxide anion (O(2) (-) ), peroxide hydrogen (H(2) O(2) ), and singlet oxygen ((1) O(2) ) was employed to investigate the scavenging role on free-radical production. The results demonstrated that the scavenging ability of GABA for O(2) (-) , H(2) O(2) , and (1) O(2) was significantly higher than that of proline. This indicated that GABA acts as an effective osmolyte to reduce the production of reactive oxygen species under water stress.

Pubmed
Journal: PloS one
August/2/2012
Abstract

The dementia of Alzheimer's type and brain ischemia are known to increase at comparable rates with age. Recent advances suggest that cerebral ischemia may contribute to the pathogenesis of Alzheimer's disease (AD), however, the neuropathological relationship between these two disorders is largely unclear. It has been demonstrated that axonopathy, mainly manifesting as impairment of axonal transport and swelling of the axon and varicosity, is a prominent feature in AD and may play an important role in the neuropathological mechanisms in AD. In this study, we investigated the early and chronic changes of the axons of neurons in the different brain areas (cortex, hippocampus and striatum) using in vivo tracing technique and grading analysis method in a rat model of transient focal cerebral ischemia/reperfusion (middle cerebral artery occlusion, MCAO). In addition, the relationship between the changes of axons and the expression of β-amyloid 42 (Aβ42) and hyperphosphorylated Tau, which have been considered as the key neuropathological processes of AD, was analyzed by combining tracing technique with immunohistochemistry or western blotting. Subsequently, we found that transient cerebral ischemia/reperfusion produced obvious swelling of the axons and varicosities, from 6 hours after transient cerebral ischemia/reperfusion even up to 4 weeks. We could not observe Aβ plaques or overexpression of Aβ42 in the ischemic brain areas, however, the site-specific hyperphosphorylated Tau could be detected in the ischemic cortex. These results suggest that transient cerebral ischemia/reperfusion induce early and chronic axonal changes, which may be an important mechanism affecting the clinical outcome and possibly contributing to the development of AD after stroke.

Pubmed
Journal: Journal of ethnopharmacology
June/12/2012
Abstract

BACKGROUND

The seed of Entada phaseoloides (L.) Merr. (Entada phaseoloides) has been long used as an effective herb for the treatment of Diabetes mellitus by Dai people, one of the Chinese ethnic minorities. Saponin is an abundant type of secondary metabolic products in the seed of this plant. The aim of this study is to evaluate the potential therapeutic effects of total saponins from Entada phaseoloides (TSEP) in experimental type 2 Diabetes mellitus (T2DM) rats.

METHODS

T2DM rats were induced by high-fat diet and low-dose streptozotocin (STZ). Then different oral doses of TSEP (25, 50 and 100 mg/kg) were administrated to T2DM rats for 21 days. For comparison, a standard antidiabetic drug, metformin (200 mg/kg), was used as a positive control drug. Then the relative biochemical analysis and histopathological examination were made to evaluate the antidiabetic effect of TSEP.

RESULTS

TSEP dramatically reduced fasted blood glucose and serum insulin levels and alleviates hyperglycemia associated oxidative stress in T2DM rats. Moreover, a significantly hypolipidemic effect and an improvement in tissue steatosis could be observed after TSEP administration. Further investigations revealed a possible anti-inflammation effect of TSEP by examining serum levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP). The effects of TSEP exhibited a dose-dependent manner and were comparable to metformin.

CONCLUSIONS

Our present study demonstrates both hypoglycemic and hypolipidemic activities of TSEP in T2DM rats, which support its antidiabetic property. This work also implies a possibility that TSEP exerts its therapeutic effect through repressing chronic inflammation responses.

Pubmed
Journal: PloS one
October/13/2015
Abstract

Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs) or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs). In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs) precontracted with acetylcholine (ACH). In the presence of nifedipine (10 µM), ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs), and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs) were blocked by chloroquine. Pyrazole 3 (Pyr3), an inhibitor of transient receptor potential C3 (TRPC3) channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

Pubmed
Journal: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
September/5/2013
Abstract

A series of studies have recently demonstrated that the oxidative stress, nuclear factor-kappa B (NF-κB) activation and the subsequent coordinated inflammatory responses played an important role in the pathogenesis of urate nephropathy (UN). Polydatin has been suggested to have the properties of anti-oxidative, anti-inflammatory and nephroprotective effects. However, the possible protective and beneficial effects of polydatin on UN are not fully elucidated. Therefore, we investigated the potential beneficial effects and possible mechanisms of polydatin on UN. In this study, polydatin showed inhibitory activities on xanthine oxidase to repress the level of serum uric acid in vivo and in vitro. Further investigations revealed that polydatin displayed little toxic effects and significantly ameliorated the renal function in fructose-induced UN mice. The nephroprotective activities of polydatin was not only due to the effects on remarkably attenuating the oxidative stress induced by uric acid, but also on markedly suppressing the oxidative stress-related inflammatory cascade, including decreasing the expressions of NF-κB p65, COX-2 and iNOS proteins and inhibiting the productions of TNF-α, PGE(2) and IL-1β. These findings elucidated that polydatin exhibited prominent nephroprotective activities and low toxic effects.

Pubmed
Journal: PloS one
July/7/2016
Abstract

Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.

Pubmed
Journal: Brain research
July/13/2015
Abstract

Paeoniflorin is a monoterpene glycoside isolated from the aqueous extract of the dry root of Paeonia. It has been identified to exhibit many pharmacological effects including enhancing the cognitive ability, producing anti-depressant-like effect and reducing the MTPT-induced toxicity. In our previous study, it has shown that paeoniflorin improved the cognitive ability and attenuated the oxidative stress in the Aβ(1-42)-treated rats. In order to further elucidate the possible molecular mechanisms of paeoniflorin on the cognitive ability, rats were injected with Aβ(1-42) (1 μg/μL) and later with paeoniflorin (15 mg/kg and 30 mg/kg, i.p.) and donepezil hydrochloride (2mg/kg, i.p.) daily for 20 days in this study. The results showed that the long-term treatment of paeoniflorin or donepezil enhanced the cognitive performances in the Morris water maze test, restored the decreased activities of superoxide dismutase and catalase and the increased level of malondialdehyde, and reversed the alterations of matrix metallopeptidase-9 and tissue-inhibitor of metalloproteinase-1 in the hippocampus of Aβ(1-42)-treated rats. Paeoniflorin also up-regulated the activity of choline acetyltrasferase and the expression of tyrosine kinase A receptor, and down-regulated the activity of acetylcholine esterase in the hippocampus of Aβ(1-42)-treated rats. These results demonstrate that paeoniflorin ameliorates the spatial learning and memory deficits by attenuating oxidative stress and regulating the nerve growth factor-mediated signaling to reinforce cholinergic functions in the hippocampus of the Aβ(1-42)-treated rats.

Pubmed
Journal: European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
February/21/2016
Abstract

At present, the treatment of hepatocellular carcinoma (HCC) is an international problem. The delivery of a chemotherapeutic agent and chemosensitizer using nanocarriers has been suggested as a novel and promising strategy in cancer treatment. However, such studies in HCC remain very limited. In this study, we developed doxorubicin (DOX) and curcumin (Cur) co-delivery lipid nanoparticles (DOX/Cur-NPs) and examined its inhibitory effect on diethylnitrosamine (DEN)-induced HCC in mice. DOX/Cur-NPs displayed the physicochemical characterizations with uniform particle size, high encapsulation efficacy and sustained release profile. In DNE-induced HCC mice treated with DOX/Cur-NPs, we observed decreased liver damage assessed by serum ALT and AST levels, liver/body weight ratio, and histopathological analysis. Compared with DOX-loaded nanoparticles (DOX-NPs), DOX/Cur-NPs induced increased Caspase-3 and Bax/Bcl-2 ratio, and decreased C-myc, PCNA and VEGF. The results revealed the synergistic effect of DOX/Cur-NPs on the apoptosis, proliferation and angiogenesis of HCC. The mRNA levels of MDR1, bcl-2 and HIF-1α, and protein levels of P-gp, Bcl-2 and HIF-1α were decreased in DOX/Cur-NPs than those in DOX-NPs, indicating that Cur might reverse multidrug resistance (MDR) through these pathways. In HCC cells, enhanced cytotoxicity and decreased IC50 and resistant index further confirmed the synergistic effects of DOX/Cur-NPs than DOX-NPs. Our studies suggest that simultaneous delivery of DOX and Cur by DOX/Cur-NPs may be a promising treatment for HCC.

Pubmed
Journal: Brain research
November/23/2015
Abstract

Ischemic stroke causes brain injury with activation of an inflammatory response that can contribute to clinical impairment. As a novel cytokine of the interleukin-1 (IL-1) family, IL-33 has been suggested to be involved in regulating pathophysiology and inflammatory responses in the central nervous system (CNS). However, the role and underlying mechanisms of IL-33 in ischemic stroke remain poorly understood. Here, adult male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) for stroke induction. The MCAO procedure resulted in the enhanced Th1 and Th17 immune responses from 6h after transient cerebral ischemia/reperfusion even up to day 3. Meanwhile, the protein and mRNA level of IL-33 expression was significantly decreased at 6h and 72 h, but not at 24h after MCAO. Moreover, recombinant mouse IL-33 administration substantially attenuated ischemic brain damage and neurological deficit at 24h and 72 h, but not at 6h after MCAO. Interestingly, the reduced CNS inflammation in IL-33-treated MCAO mice may be at least partly due to an induced immuno-shift of Th cells from Th1 to Th2 response and suppressing Th17 immune response. These findings demonstrate that IL-33 can play a protective role after MCAO and may be a new target for therapy of ischemic stroke.

Pubmed
Journal: Cellular signalling
November/3/2014
Abstract

Activation of the cyclic AMP (cAMP) pathway reduces bladder contractility. However, the role of phosphodiesterase (PDE) families in regulating this function is poorly understood. Here, we compared the contractile function of the cAMP hydrolyzing PDEs in neonatal rat bladder smooth myocytes. RT-PCR and Western blotting analysis revealed that several isoforms of PDE1-4 were expressed in neonatal rat bladder. While 8-methoxymethyl-3-isobutyl-1-methylxanthine (a PDE1 inhibitor) and BAY-60-7550 (a PDE2 inhibitor) had no effect on the carbachol-enhanced phasic contractions of bladder strips, cilostamide (Cil, a PDE3 inhibitor) and Ro-20-1724 (Ro, a PDE4 inhibitor) significantly reduced these contractions. This inhibitory effect of Ro was blunted by the PKA inhibitor H-89, while the inhibitory effect of Cil was strongly attenuated by the PKG inhibitor KT 5823. Application of Ro in single bladder smooth myocytes resulted in an increase in Ca(2+) spark frequency but a decrease both in Ca(2+) transients and in sarcoplasmic reticulum (SR) Ca(2+) content. In contrast, Cil had no effect on these events. Furthermore, Ro-induced inhibition of the phasic contractions was significantly blocked by ryanodine and iberiotoxin. Taken together, PDE3 and PDE4 are the main PDE isoforms in maintaining the phasic contractions of bladder smooth myocytes, with PDE4 being functionally more active than PDE3. However, their roles are mediated through different mechanisms.

Pubmed
Journal: Anaerobe
December/6/2010
Abstract

Lactic acid bacteria originated from swine feces and intestines were selected for potential probiotics based on their bile-salt resistance, low pH tolerance, potential adhesion to epithelial cells and especially functional properties, including production of antimicrobial substances, bile-salt hydrolase (BSH) and amylolytic activity. Results showed 7 isolates with antimicrobial activity, 5 with BSH activity and 3 with amylolytic activity were preliminarily selected from 485 lactic acid bacteria based on their highest potential with functional properties in vitro. The 15 isolates were further assayed on the essential characteristics as potential probiotics. All isolates were fully tolerant to 0.3% bile salts and 11 of them were able to resist pH 3 for 3 h without loss of viable cells. The eleven isolates were then evaluated on their adhesion capability. Wide variation in the hydrophobic character and specific adhesion efficiency was observed and three isolates G1-1, G22-2 and G8-5, with respective antimicrobial, BSH and amylolytic activities were finally selected. In addition, the three isolates were compatible in the coexistence assay. Isolate G1-1 was identified as Lactobacillus salivarius by API system and a 16S rRNA gene sequence analysis. Both G8-5 and G22-2 showed the closest homology to Lactobacillus reuteri according to their 16S rRNA gene sequences (99%). From the study, the three Lactobacilli strains were shown to share the functional properties necessary for probiotics use in animal additives. Their compatibility with respective in vitro activities was expected to show enhanced in vivo efficacy after combination for multistrain probiotics use.

Pubmed
Journal: Clinical and experimental pharmacology & physiology
November/13/2014
Abstract

It has been reported that bitter tastants decrease blood pressure and relax precontracted vascular smooth muscle. However, the underlying mechanisms remain unclear. The aim of the present study was to determine the mechanism underlying the vasorelaxant effect of the bitter tastants. Thoracic aortic rings were isolated from Wistar rats and contractions were measured using an isometric myograph. Intracellular Ca(2+) ([Ca(2+)]i) in single rat thoracic aortic smooth muscle cells was recorded by calcium imaging. Calcium currents in single cells were recorded using patch-clamp techniques. High K(+) (140 mmol/L) induced contractions in rat thoracic aortic rings that were inhibited by 3 mmol/L chloroquine, 3 mmol/L denatonium and 10 μmol/L nifedipine. In single rat thoracic aortic smooth muscle cells, high K(+) increased [Ca(2+)]i and this effect was also blocked by 3 mmol/L chloroquine and 10 μmol/L nifedipine. Under Ca(2+) -free conditions, high K(+) failed to induce contractions in rat thoracic aortic rings. On its own, chloroquine had no effect on the muscle tension of rat aortic rings and [Ca(2+) ]i. The vasorelaxant effects of chloroquine on precontracted rat thoracic aortic rings were not altered by either 1 μg/mL pertussis toxin (PTX), an inhibitor of Gαo/i-protein, or 1 mmol/L gallein, an inhibitor of Gβγ-protein. The results of patch-clamp analysis in single cells indicate that 1 mmol/L chloroquine blocks voltage-dependent L-type Ca(2+) channel (VDLCC) currents from both extracellular and intracellular sides. Together, the results indicate that chloroquine can block VDLCC, independent of PTX- and gallein-sensitive G-proteins, resulting in relaxation of high K(+)-precontracted thoracic aortic smooth muscle.

Pubmed
Journal: The Journal of biological chemistry
July/6/2016
Abstract

Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL.

Pubmed
Journal: Journal of ethnopharmacology
April/20/2014
Abstract

BACKGROUND

Sanguis draxonis (SD) is a kind of red resin obtained from the wood of Dracaena cochinchinensis (Lour.) S. C. Chen (Dracaena cochinchinensis). It is a Chinese traditional herb that is prescribed for the handling of diabetic disorders, which is also supported by an array of scientific studies published in recent years. Although chemical constituents of this plant material have also been previously evaluated (Tang et al., 1995; Wei et al., 1998), it still remains poorly understood which constituent is the major contributor to its antidiabetic activities. Moreover, very little is known about the molecular mechanisms underlying antidiabetic activities of SD. Flavonoids exist at a high level in SD. The aim of this study is to evaluate the antidiabetic effects of total flavonoids from SD (SDF) in type 2 Diabetes mellitus (T2DM) rats.

METHODS

T2DM rats were induced by 4 weeks high-fat diet and a singular injection of streptozotocin (STZ) (35mg/kg). Then T2DM rats were treated with SDF for 21 days, using normal saline as the negative control. For comparison, a standard antidiabetic drug, metformin (200mg/kg), was used as a positive control. Three weeks later, relative biochemical indexes were determined and histopathological examinations were performed to assess the antidiabetic activities of SDF.

RESULTS

SDF not only exhibited a significant hypoglycemic activity, but also alleviated dyslipidemia, tissue steatosis, and oxidative stress associated with T2DM. Moreover, considerable pancreatic islet protecting effects could be observed after SDF treatment. Further investigations revealed a potential anti-inflammation activity of SDF by determining serum levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP).

CONCLUSIONS

This study demonstrates both hypoglycemic and hypolipidemic effects of SDF in T2DM rats, suggesting that flavonoids are the major active ingredients accounting for the antidiabetic activity of SD. Alleviating chronic inflammation responses and protecting pancreatic islets are possible mechanisms involved in the antidiabetic activity of SDF.

Pubmed
Journal: Journal of proteomics
May/29/2016
Abstract

Male sterility is a common phenomenon in flowering plants, and it has been successfully developed in several crops by taking advantage of heterosis. Cotton (Gossypium hirsutum L.) is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To use CCRI9106 in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. Here, histological and iTRAQ-facilitated proteomic analyses of anthers were performed to explore male sterility mechanisms of the mutant. Scanning and transmission electron microscopy of the anthers showed that the development of pollen wall in CCRI9106 was severely defective with a lack of exine formation. At the protein level, 6121 high-confidence proteins were identified and 325 of them showed differential expression patterns between mutant and wild-type anthers. The proteins up- or down-regulated in MT anthers were mainly involved in exine formation, protein degradation, calcium ion binding,etc. These findings provide valuable information on the proteins involved in anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton.

Pubmed
Journal: Inflammation
November/2/2014
Abstract

In the previous study, the anti-inflammatory effect of p-cymene had been found. In this study, we investigated anti-inflammatory effects of p-cymene on acute lung injury using lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators including tumor necrosis factor alpha (TNF-α), IL-1β, and IL-6 were assayed by enzyme-linked immunosorbent assay method. The pathological changes of the lung tissues were observed by hematoxylin and eosin staining. The inflammatory signal pathway-related protein levels of NF-κB were measured using Western blotting. The data showed that treatment with the p-cymene markedly attenuated inflammatory cell numbers in the BALF, decreased NF-κB protein level in the lungs, improved SOD activity, and inhibited MPO activity. Histological studies demonstrated that p-cymene substantially inhibited LPS-induced neutrophils in the lung tissue compared with the model group. The results indicated that p-cymene had a protective effect on LPS-induced ALI in mice.

Pubmed
Journal: EMBO reports
July/13/2016
Abstract

Complexins are synaptic SNARE complex-binding proteins that cooperate with synaptotagmins in activating Ca(2+)-stimulated, synaptotagmin-dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin-independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non-metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca(2+)-triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.

load more...