Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(651)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Pharmacology and Therapeutics
August/25/2013
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Publication
Journal: Journal of Biological Chemistry
July/7/2004
Abstract
The mammalian CYP1A1, CYP1A2, and CYP1B1 genes (encoding cytochromes P450 1A1, 1A2, and 1B1, respectively) are regulated by the aromatic hydrocarbon receptor (AHR). The CYP1 enzymes are responsible for both metabolically activating and detoxifying numerous polycyclic aromatic hydrocarbons (PAHs) and aromatic amines present in combustion products. Many substrates for CYP1 enzymes are AHR ligands. Differences in AHR affinity between inbred mouse strains reflect variations in CYP1 inducibility and clearly have been shown to be associated with differences in risk of toxicity or cancer caused by PAHs and arylamines. Variability in the human AHR affinity exists, but differences in human risk of toxicity or cancer related to AHR activation remain unproven. Mouse lines having one or another of the Cyp1 genes disrupted have shown paradoxical effects; in the test tube or in cell culture these enzymes show metabolic activation of PAHs or arylamines, whereas in the intact animal these enzymes are sometimes more important in the role of detoxification than metabolic potentiation. Intact animal data contradict pharmaceutical company policies that routinely test drugs under development; if a candidate drug shows CYP1 inducibility, further testing is generally discontinued for fear of possible toxic or carcinogenic effects. In the future, use of "humanized" mouse lines, containing a human AHR or CYP1 allele in place of the orthologous mouse gene, is one likely approach to show that the AHR and the CYP1 enzymes in human behave similarly to that in mouse.
Publication
Journal: Nature Reviews Cancer
January/18/2007
Abstract
Some cytochrome P450 (CYP) heme-thiolate enzymes participate in the detoxication and, paradoxically, the formation of reactive intermediates of thousands of chemicals that can damage DNA, as well as lipids and proteins. CYP expression can also affect the production of molecules derived from arachidonic acid, and alters various downstream signal-transduction pathways. Such changes can be precursors to malignancy. Recent studies in mice have changed our perceptions about the function of CYP1 enzymes. We suggest a two-tiered system to predict an overall inter-individual risk of tumorigenesis based on DNA variants in certain 'early defence' CYP genes, combined with polymorphisms in various downstream target genes.
Publication
Journal: Archives of Pharmacal Research
August/14/2005
Abstract
Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the retinoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these CYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They generally possess electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and CAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular "stress" response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other "cellular stresses" including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the "stress" expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against "environmental" insults such as those elicited by exposure to xenobiotics.
Publication
Journal: Cancer Science
April/27/2004
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously distributed environmental chemicals. PAHs acquire carcinogenicity only after they have been activated by xenobiotic-metabolizing enzymes to highly reactive metabolites capable of attacking cellular DNA. Cytochrome P450 (CYP) enzymes are central to the metabolic activation of these PAHs to epoxide intermediates, which are converted with the aid of epoxide hydrolase to the ultimate carcinogens, diol-epoxides. Historically, CYP1A1 was believed to be the only enzyme that catalyzes activation of these procarcinogenic PAHs. However, recent studies have established that CYP1B1, a newly identified member of the CYP1 family, plays a very important role in the metabolic activation of PAHs. In CYP1B1 gene-knockout mice treated with 7,12-dimethylbenz[a]anthracene and dibenzo[a,l]pyrene, decreased rates of tumor formation were observed, when compared to wild-type mice. Significantly, gene expression of CYP1A1 and 1B1 is induced by PAHs and polyhalogenated hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin through the arylhydrocarbon receptor. Differences in the susceptibility of individuals to the adverse action of PAHs may, in part, be due to differences in the levels of expression of CYP1A1 and 1B1 and to genetic variations in the CYP1A1 and 1B1 genes.
Publication
Journal: Drug Metabolism and Disposition
January/17/2010
Abstract
Members of the cytochrome P450 (P450) enzyme families CYP1, CYP2, and CYP3 are responsible for the metabolism of approximately 75% of all clinically relevant drugs. With the increased prevalence of nonalcoholic fatty liver disease (NAFLD), it is likely that patients with this disease represent an emerging population at significant risk for alterations in these important drug-metabolizing enzymes. The purpose of this study was to determine whether three progressive stages of human NALFD alter hepatic P450 expression and activity. Microsomes isolated from human liver samples diagnosed as normal, n = 20; steatosis, n = 11; nonalcoholic steatohepatitis (NASH) (fatty liver), n = 10; and NASH (no longer fatty), n = 11 were analyzed for P450 mRNA, protein, and enzyme activity. Microsomal CYP1A2, CYP2D6, and CYP2E1 mRNA levels were decreased with NAFLD progression, whereas CYP2A6, CYP2B6, and CYP2C9 mRNA expression increased. Microsomal protein expression of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 tended to decrease with NAFLD progression. Likewise, functional activity assays revealed decreasing trends in CYP1A2 (p = 0.001) and CYP2C19 (p = 0.05) enzymatic activity with increasing NAFLD severity. In contrast, activity of CYP2A6 (p = 0.001) and CYP2C9 (diclofenac, p = 0.0001; tolbutamide, p = 0.004) was significantly increased with NAFLD progression. Increased expression of proinflammatory cytokines tumor necrosis factor alpha and interleukin 1beta was observed and may be responsible for observed decreases in respective P450 activity. Furthermore, elevated CYP2C9 activity during NAFLD progression correlated with elevated hypoxia-induced factor 1alpha expression in the later stages of NAFLD. These results suggest that significant and novel changes occur in hepatic P450 activity during progressive stages of NAFLD.
Publication
Journal: Philosophical Transactions of the Royal Society B: Biological Sciences
July/16/2013
Abstract
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.
Publication
Journal: Journal of Biological Chemistry
April/6/2009
Abstract
Dioxins and other polycyclic aromatic compounds formed during the combustion of waste and fossil fuels represent a risk to human health, as well as to the well being of our environment. Compounds of this nature exert carcinogenic and endocrine-disrupting effects in experimental animals by binding to the orphan aryl hydrocarbon receptor (AhR). Understanding the mechanism of action of these pollutants, as well as the physiological role(s) of the AhR, requires identification of the endogenous ligand(s) of this receptor. We reported earlier that activation of AhR by ultraviolet radiation is mediated by the chromophoric amino acid tryptophan (Trp), and we suggested that a new class of compounds derived from Trp, in particular 6-formylindolo[3,2-b]carbazole (FICZ), acts as natural high affinity ligands for this receptor. Here we describe seven new FICZ-derived indolo[3,2-b]carbazole-6-carboxylic acid metabolites and two sulfoconjugates, and we demonstrate the following. (i) FICZ is formed efficiently by photolysis of Trp upon exposure to visible light. (ii) FICZ is an exceptionally good substrate for cytochromes P450 (CYP) 1A1, 1A2, and 1B1, and its hydroxylated metabolites are remarkably good substrates for the sulfotransferases (SULTs) 1A1, 1A2, 1B1, and 1E1. Finally, (iii) sulfoconjugates of phenolic metabolites of FICZ are present in human urine. Our findings indicate that formylindolo[3,2-b]carbazols are the most potent naturally occurring activators of the AhR signaling pathway and may be the key substrates of the CYP1 and SULT1 families of enzymes. These conclusions contradict the widespread view that xenobiotic compounds are the major AhR ligands and CYP1 substrates.
Publication
Journal: Current Drug Metabolism
February/18/2003
Abstract
Drug or xenobiotics metabolizing enzymes (DMEs or XMEs) play central roles in the biotransformation, metabolism and/or detoxification of xenobiotics or foreign compounds, that are introduced to the human body. In general, DMEs protect or defend the body against the potential harmful insults from the environment. Once in the body, many xenobiotics may induce signal transduction events either specifically or non-specifically leading to various cellular, physiological and pharmacological responses including homeostasis, proliferation, differentiation, apoptosis, or necrosis. For the body to minimize the insults caused by these xenobiotics, various tissues/organs are well equipped with diverse DMEs including various Phase I and Phase II enzymes, which are present in abundance either at the basal level and/or increased/induced after exposure. To better understand the pharmacogenomic/gene expression profile of DMEs and the underlying molecular mechanisms after exposure to xenobiotics or drugs, we will review our current knowledge on DNA microarray technology in gene expression profiling and the signal transduction events elicited by various xenobiotics mediated by either specific receptors or non-specific signal transduction pathways. Pharmacogenomics is the study of genes and the gene products (proteins) essential for pharmacological or toxicological responses to pharmaceutical agents. In order to assess the battery of genes that are induced or repressed by xenobiotics and pharmaceutical agents, cDNA microarray or oligonucleotide-based DNA chip technology can be a powerful tool to analyze, simultaneously, the gene expression profiles that are induced or repressed by xenobiotics. The regulation of gene expression of the various phase I DMEs such as the cytochrome P450 (CYP) as well as phase II DMEs generally depends on the interaction of the xenobiotics with the receptors. For instance, the expression of CYP1 genes can be induced via the aryl hydrocarbon receptor (AhR) which dimerizes with the AhR nuclear translocator (ARNT), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan receptors, the constitutive androstane receptor (CAR) and pregnane X receptors (PXR), heterodimerize with the retinoid X receptor (RXR), transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR) which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and it has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on the CYP4A genes. The transcriptional activation of these promoters generally leads to the induction of their mRNA. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, and PPAR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epicatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They can activate the mitogen-activated protein kinase (MAPK) pathway via electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) enhancers which are found in many phase II DMEs as well as many cellular defensive enzymes such as thioredoxins, gammaGCS and HO-1, with the subsequent induction of gene expression of these genes. It appears that in general, exposure to phase I or phase II gene inducers or xenobiotics may trigger a cellular "stress" response leading to the increase in the gene expression of these DMEs, which ultimately enhance the elimination and clearance of the xenobiotics e xenobiotics and/or the "cellular stresses" including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the "stress" expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the organism against environmental insults such as xenobiotics. Advances in DNA microarray technologies and mammalian genome sequencing will soon allow quantitative assessment of expression profiles of all genes in the selected tissues. The ability to predict phenotypic outcomes from gene expression profiles is currently in its infancy, however, and will require additional bioinformatic tools. Such tools will facilitate information gathering from literature and gene databases as well as integration of expression data with animal physiology studies. The study of pharmacogenomic/gene expression profile and the understanding of the regulation and the signal transduction mechanisms elicited by pharmaceutical agents can be of potential importance during drug discovery and the drug development.
Publication
Journal: Molecular Pharmacology
June/18/2006
Abstract
CYP1A1 and CYP1B1 metabolically activate many polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene, to reactive intermediates associated with toxicity, mutagenesis, and carcinogenesis. Paradoxically, however, Cyp1a1-/- knockout mice are more sensitive to oral benzo[a]pyrene exposure, compared with wild-type Cyp1a1+/+ mice (Mol Pharmacol 65:1225, 2004). To further investigate the mechanism for this enhanced sensitivity, Cyp1a1-/-, Cyp1a2-/-, and Cyp1b1-/- single-knockout, Cyp1a1/1b1-/- and Cyp1a2/1b1-/- double-knockout, and Cyp1+/+ wild-type mice were analyzed. After administration of oral benzo[a]pyrene (125 mg/kg/day) for 18 days, Cyp1a1-/- mice showed marked wasting, immunosuppression, and bone marrow hypocellularity, whereas the other five genotypes did not. After 5 days of feeding, steady-state blood levels of benzo[a]pyrene were approximately 25 and approximately 75 times higher in Cyp1a1-/- and Cyp1a1/1b1-/- mice, respectively, than in wild-type mice. Benzo[a]pyrene-DNA adduct levels were highest in liver, spleen, and marrow of Cyp1a1-/- and Cyp1a1/1b1-/- mice. Many lines of convergent data obtained with oral benzo[a]pyrene dosing suggest that: 1) inducible CYP1A1, probably in both intestine and liver, is most important in detoxication; 2) CYP1B1 in spleen and marrow is responsible for metabolic activation of benzo[a]pyrene, which results in immune damage in the absence of CYP1A1; 3) both thymus atrophy and hepatocyte hypertrophy are independent of CYP1B1 metabolism but rather may reflect long-term activation of the aryl hydrocarbon receptor; and 4) the magnitude of immune damage in Cyp1a1-/- and Cyp1a1/1b1-/- mice is independent of plasma benzo[a]pyrene and total-body burden and clearance. Thus, a balance between tissue-specific expression of the CYP1A1 and CYP1B1 enzymes governs sensitivity of benzo[a]pyrene toxicity and, possibly, carcinogenicity.
load more...