Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Cellular Physiology
October/10/2001
Abstract
Human bone marrow stromal cells are a multipotent population of cells capable of differentiating into a number of mesodermal lineages as well as supporting hematopoeisis. Their distinct protein and gene expression phenotype is well characterized in the literature. Human adipose tissue presents an alternative source of multipotent stromal cells. In this study, we have defined the phenotype of the human adipose tissue-derived stromal cells in both the differentiated and undifferentiated states. Flow cytometry and immunohistochemistry show that human adipose tissue-derived stromal cells have a protein expression phenotype that is similar to that of human bone marrow stromal cells. Expressed proteins include CD9, CD10, CD13, CD29, CD34, CD44, CD 49(d), CD 49(e), CD54, CD55, CD59, CD105, CD106, CD146, and CD166. Expression of some of these proteins was further confirmed by PCR and immunoblot detection. Unlike human bone marrow-derived stromal cells, we did not detect the STRO-1 antigen on human adipose tissue-derived stromal cells. Cells cultured under adipogenic conditions uniquely expressed C/EBPalpha and PPARdelta, two transcriptional regulators of adipogenesis. Cells cultured under osteogenic conditions were more likely to be in the proliferative phases of the cell cycle based on flow cytometric analysis of PCNA and Ki67. The similarities between the phenotypes of human adipose tissue-derived and human bone marrow-derived stromal cells could have broad implications for human tissue engineering.
Publication
Journal: Science
December/17/1991
Abstract
Binding of ligand or antibody to certain cell-surface proteins that are anchored to the membrane by glycophosphatidylinositol (GPI) can cause activation of leukocytes. However, it is not known how these molecules, which lack intracellular domains, can transduce signals. The GPI-linked human molecules CD59, CD55, CD48, CD24, and CD14 as well as the mouse molecules Thy-1 and Ly-6 were found to associate with protein tyrosine kinases, key regulators of cell activation and signal transduction. A protein tyrosine kinase associated with the GPI-linked proteins CD59, CD55, and CD48 in human T cells, and with Thy-1 in mouse T cells was identified as p56lck, a protein tyrosine kinase related to Src. This interaction of GPI-linked molecules with protein tyrosine kinases suggests a potential mechanism of signal transduction in cells.
Publication
Journal: Trends in Immunology
August/18/2002
Abstract
Recognition of bacterial lipopolysaccharide (LPS) by the innate immune system elicits strong pro-inflammatory responses that can eventually cause a fatal sepsis syndrome in humans. LPS-mediated activation of mammalian cells is believed to involve the interaction of LPS with lipopolysaccharide-binding protein (LBP) in the serum and, subsequently with CD14. Although there is no doubt that CD14 binds LPS, CD14 is not capable of initiating a transmembrane activation signal because it is a glycosylphosphatidylinositol (GPI)-anchored protein. Accumulating evidence has suggested that LPS must interact with a transmembrane receptor(s) that is responsible for signal transduction. Integrins CD11c and/or CD18, Toll-like receptors (TLRs), as well as CD55, have been suggested to serve this function. Recently, we have revealed that a signalling complex of receptors is formed following LPS stimulation, which comprises heat-shock proteins (Hsps) 70 and 90, chemokine receptor 4 (CXCR4) and growth differentiation factor 5 (GDF5). Taking into account the discovery of the TLRs and the LPS-activation cluster, we propose a new model of LPS recognition.
Publication
Journal: Molecular Immunology
December/15/2004
Abstract
The complement (C) inflammatory cascade is part of the phylogenetically ancient innate immune response and is crucial to our natural ability to ward off infection. It has three critical physiologic activities: (i) defending against microbial infections by triggering the generation of a membranolytic complex (C5b9 complex) at the surface of the pathogen and C fragments (named opsonins, i.e., C1q, C3b and iC3b) which interact with C cell surface receptors (CR1, CR3 and CR4) to promote phagocytosis. Soluble C anaphylatoxins (C4a, C3a and C5a) greatly control the local pro-inflammatory response through the chemotaxis and activation of leukocytes; (ii) bridging innate and adaptive immunity (essentially through C receptor type 2, CR2, expressed by B cells) and (iii) disposing of immune complexes and the products of the inflammatory injury (i.e., other danger signals, e.g., toxic cell debris and apoptotic corpses) to ensure the protection and healing of the host. The regulatory mechanisms of C are finely balanced so that, on the one hand, the deposition of C is focused on the surface of invading microorganisms and, on the other hand, the deposition of C on normal cells is limited by several key C inhibitors (e.g., CD46, CD55 and CD59). Knowledge of the unique molecular and cellular innate immunological interactions that occur in the development and resolution of pathology should facilitate the design of effective therapeutic strategies to fight selectively against intruders.
Publication
Journal: Molecular Immunology
September/24/2003
Abstract
Monoclonal antibodies (mAbs) are being increasingly used in cancer therapy owing to their ability to recognize specifically cancer cells and to activate complement- and cell-mediated cytotoxicity and/or to induce growth arrest or apoptosis. The therapeutic potential of anticancer antibodies is significantly limited due to the ability of cancer cells to block killing by complement. Of the multiple resistance strategies exploited by cancer cells, the expression of membrane complement regulatory proteins (mCRPs), such as CD46 (membrane cofactor protein (MCP)), CD55 (decay-accelerating factor (DAF)), CD35 (complement receptor type-1 (CR1)) and CD59, has received most attention. CD46, CD55 and CD35 block the complement cascade at the C3 activation stage and CD59 prevents assembly of the membrane attack complex of complement (MAC). These proteins protect normal tissues from accidental injury by activated complement, but also confer resistance on cancer cells, thereby limiting the effect of complement-fixing monoclonal antibodies. Expression of mCRPs on malignant cells is highly variable, yet there is clear indication that certain tumors express higher mCRP levels than the normal tissue from which they have evolved. mCRP level of expression and cellular location may also vary during malignant transformation and between differentiated and undifferentiated tumors. Neutralizing anti-mCRP mAbs have been used in vitro to elucidate the significance of mCRP expression to the tumor complement resistance phenotype. In general, CD59 appears to be the most effective mCRP protecting tumor cells from complement-mediated lysis. Nevertheless, it acts additively, and in certain tumors even synergistically, with CD55 and CD46. It is envisaged that treatment of cancer patients with mCRP blocking antibodies targeted specifically to cancer cells in combination with anticancer complement-fixing antibodies will improve the therapeutic efficacy.
Publication
Journal: Journal of Virology
September/23/2003
Abstract
The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR. Species B adenoviruses mainly cause disease in the respiratory tract, the eyes, and in the urinary tract. Here we demonstrate that adenovirus type 11 (Ad11; of species B) binds to Chinese hamster ovary (CHO) cells transfected with CD46 (membrane cofactor protein)-cDNA at least 10 times more strongly than to CHO cells transfected with cDNAs encoding CAR or CD55 (decay accelerating factor). Nonpermissive CHO cells were rendered permissive to Ad11 infection upon transfection with CD46-cDNA. Soluble Ad11 fiber knob but not Ad7 or Ad5 knob inhibited binding of Ad11 virions to CD46-transfected cells, and anti-CD46 antibodies inhibited both binding of and infection by Ad11. From these results we conclude that CD46 is a cellular receptor for Ad11.
Publication
Journal: Blood
August/9/2000
Abstract
The chimeric anti-CD20 MAb rituximab has recently become a treatment of choice for low-grade or follicular non-Hodgkin's lymphomas (FL) with a response rate of about 50%. In this report, we have investigated the mechanism of action of rituximab on 4 FL and 1 Burkitt's lymphoma (BL) cell lines, 3 fresh FL samples and normal B cells in vitro. Rituximab efficiently blocks the proliferation of normal B cells, but not that of the lymphoma lines. We did not detect significant apoptosis of the cell lines in response to rituximab alone. All cell lines were targets of antibody-dependent cellular cytotoxicity (ADCC). On the other hand, human complement-mediated lysis was highly variable between cell lines, ranging from 100% lysis to complete resistance. Investigation of the role of the complement inhibitors CD35, CD46, CD55, and CD59 showed that CD55, and to a lesser extent CD59, are important regulators of complement-mediated cytotoxicity (CDC) in FL cell lines as well as in fresh cases of FL: Blocking CD55 and/or CD59 function with specific antibodies significantly increased CDC in FL cells. We conclude that CDC and ADCC are major mechanisms of action of rituximab on B-cell lymphomas and that a heterogeneous susceptibility of different lymphoma cells to complement may be at least in part responsible for the heterogeneity of the response of different patients to rituximab in vivo. Furthermore, we suggest that the relative levels of CD55 and CD59 may become useful markers to predict the clinical response. (Blood. 2000;95:3900-3908)
Publication
Journal: Clinical Immunology
March/29/2006
Abstract
A number of proteins anchored on the cell surface function to protect host tissues from bystander injury when complement is activated. In humans, they include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46), complement receptor 1 (CR1, CD35) and CD59. Although disease conditions directly attributable to abnormal function of these proteins are relatively rare, it has become evident from recent studies using animal models that membrane complement regulatory proteins are important modulators of tissue injury in many autoimmune and inflammatory disease settings. Evidence is also emerging to support a role of these proteins in regulating cellular immunity. In this article, we highlight recent advances on the in vivo biology of membrane complement regulatory proteins and discuss their relevance in human disease pathogenesis and therapeutics.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/27/1994
Abstract
Echoviruses are human pathogens belonging to the picornavirus family. Decay-accelerating factor (DAF) is a glycosylphosphatidylinositol (GPI)-anchored surface protein that protects cells from lysis by autologous complement. Anti-DAF monoclonal antibodies prevented echovirus 7 attachment to susceptible cells and protected cells from infection. HeLa cells specifically lost the capacity to bind echovirus 7 when treated with phosphatidylinositol-specific phospholipase C, an enzyme that releases GPI-anchored proteins from the cell surface, indicating that the virus receptor, like DAF, is a GPI-anchored protein. Although Chinese hamster ovary cells do not bind echovirus 7, transfectants expressing human DAF bound virus efficiently, and binding was prevented by pretreatment with an anti-DAF monoclonal antibody. Anti-DAF antibodies prevented infection by at least six echovirus serotypes. These results indicate that DAF is the receptor mediating attachment and infection by several echoviruses.
Authors
Publication
Journal: Blood
December/19/2001
Abstract
Complement-dependent cytotoxicity is thought to be an important mechanism of action of the anti-CD20 monoclonal antibody rituximab. This study investigates the sensitivity of freshly isolated cells obtained from 33 patients with B-cell chronic lymphocytic leukemia (B-CLL), 5 patients with prolymphocytic leukemia (PLL), and 6 patients with mantle cell lymphoma (MCL) to be lysed by rituximab and complement in vitro. The results showed that in B-CLL and PLL, the levels of CD20, measured by standard immunofluorescence or using calibrated beads, correlated linearly with the lytic response (coefficient greater than or equal to 0.9; P <.0001). Furthermore, the correlation remained highly significant when the 6 patients with MCL were included in the analysis (coefficient 0.91; P <.0001), which suggests that CD20 levels primarily determine lysis regardless of diagnostic group. The role of the complement inhibitors CD46, CD55, and CD59 was also investigated. All B-CLL and PLL cells expressed these molecules, but at different levels. CD46 was relatively weak on all samples (mean fluorescence intensity less than 100), whereas CD55 and CD59 showed variability of expression (mean fluorescence intensity 20-1200 and 20-250, respectively). Although CD55 and CD59 levels did not permit prediction of complement susceptibility, the functional block of these inhibitors demonstrated that they play an important role in regulating complement-dependent cytotoxicity. Thus, lysis of poorly responding B-CLL samples was increased 5- to 6-fold after blocking both CD55 and CD59, whereas that of high responders was essentially complete in the presence of a single blocking antibody. These data demonstrate that CD20, CD55, and CD59 are important factors determining the in vitro response to rituximab and complement and indicate potential strategies to improve the clinical response to this biologic therapy.
Publication
Journal: Journal of Immunology
December/20/1992
Abstract
Decay-accelerating factor (DAF or CD55) is a 70-kDa glycosyl-phosphatidylinositol (GPI)-anchored protein that protects cells from complement-mediated lysis by either preventing the formation of or dissociating C3 convertases. Cross-linking of DAF on human peripheral T cells by polyclonal antibodies has previously been reported to lead to lymphocyte proliferation. Two mAb, both mapping to the third short consensus repeat region of DAF, were able to trigger proliferation of human peripheral T cells. To determine the role of the GPI anchor in cell activation, we transfected EL-4 murine thymoma cells with cDNA encoding either DAF or a transmembrane form of DAF (DAF-TM). The DAF-transfected cells were able to transduce late activation events as evidenced by IL-2 production, whereas DAF-TM transfected cells were unable to do so. The GPI-anchored DAF was able to transduce early activation events leading to the tyrosine phosphorylation of a 40-kDa protein and several proteins in the 85-95 kDa range--an event absent in DAF-TM-transfected cells. Furthermore, anti-DAF immunoprecipitates of DAF-transfected cells contain tyrosine kinase activity leading to the phosphorylation of 40-, 56-60-, and 85-kDa proteins, whereas anti-DAF immunoprecipitates of DAF-TM-transfected cells did not have an associated kinase activity. Both p56lck and p59fyn were associated with DAF in DAF-transfected EL-4 cells. In HeLa cells transfected with fyn, DAF associated with p59fyn. This complex of DAF with src family protein tyrosine kinases requires the GPI anchor and suggests a pathway for signaling through GPI-anchored membrane proteins.
Publication
Journal: Journal of Experimental Medicine
September/6/1995
Abstract
This study investigates whether cell-derived glycosylphosphatidylinositol-linked complement control proteins CD55 and CD59 can be incorporated into HIV-1 virions and contribute to complement resistance. Virus was prepared by transfection of cell lines with pNL4-3, and primary isolates of HIV-1 were derived from patients' PBMCs. Virus was tested for sensitivity to complement-mediated virolysis in the presence of anti-gp160 antibody. Viral preparations from JY33 cells, which lack CD55 and CD59, were highly sensitive to complement. HIV-1 preparations from H9 and U937 cells, which express low levels of CD55 and CD59, had intermediate to high sensitivity while other cell line-derived viruses and primary isolates of HIV-1 were resistant to complement-mediated virolysis. Although the primary isolates were not lysed, they activated complement as measured by binding to a complement receptor positive cell line. While the primary isolates were resistant to lysis in the presence of HIV-specific antibody, antibody to CD59 induced lysis. Likewise, antibody to CD55 and CD59 induced lysis of cell line-derived virus. Western blot analysis of purified virus showed bands corresponding to CD55 and CD59. Phosphatidylinositol-specific phospholipase C treatment of either cell line-derived or primary isolates of HIV-1 increased sensitivity to complement while incubation of sensitive virus with purified CD55 and CD59 increased resistance to complement. These results show that CD55 and CD59 are incorporated into HIV-1 particles and function to protect virions from complement-mediated destruction, and they are the first report of host cell proteins functioning in protection of HIV-1 from immune effector mechanisms.
Publication
Journal: Arthritis and rheumatism
April/8/2004
Abstract
OBJECTIVE
To evaluate synovial fluid (SF) for the presence of mesenchymal progenitor cells (MPCs), to compare SF MPCs with bone marrow (BM) MPCs, and to enumerate these cells in both inflammatory arthritis and osteoarthritis (OA).
METHODS
SF from 100 patients with arthritis (53 rheumatoid arthritis [RA], 20 OA, and 27 other arthropathies) was evaluated. To establish multipotentiality, polyclonal and single cell-derived cultures of SF fibroblasts were examined by standard and quantitative differentiation assays. Their phenotype before and after expansion was determined by multiparameter flow cytometry. A colony-forming unit-fibroblast assay was used for SF MPC enumeration.
RESULTS
Regardless of the nature of the arthritis, both polyclonal and single cell-derived cultures of SF fibroblasts possessed trilineage mesenchymal differentiation potentials. The number of MPCs in a milliliter of SF was higher in OA (median 37) than in RA (median 2) (P < 0.00001). No significant differences in MPC numbers were found between early and established RA (median 3 and 2 cells/ml, respectively). Culture-expanded SF and BM MPCs had the same phenotype (negative for CD45 and positive for D7-FIB, CD13, CD105, CD55, and CD10). Rare, uncultured SF fibroblasts were CD45(low) and expressed low-affinity nerve growth factor receptor, similar to in vivo BM MPCs.
CONCLUSIONS
Our findings prove the presence of rare tripotential MPCs, at the single-cell level, in the SF of patients with arthritis. SF MPCs are clonogenic and multipotential fibroblasts that, despite the pathologic environment within a diseased joint, have a phenotype similar to that of uncultured BM MPCs. The higher prevalence of MPCs in OA SF suggests their likely origin from disrupted joint structures. These findings could determine the role of MPCs in the pathogenesis of inflammatory arthritis, together with their role in attempted joint regeneration in degenerative arthritis, which has yet to be established.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
August/5/1998
Abstract
Vaccinia virus (VV) produces two antigenically and structurally distinct infectious virions, intracellular mature virus (IMV) and extracellular enveloped virus (EEV). Here we have investigated the resistance of EEV and IMV to neutralization by complement in the absence of immune antibodies. When EEV is challenged with complement from the same species as the cells used to grow the virus, EEV is resistant to neutralization by complement, whereas IMV is not. EEV resistance was not a result of EEV protein B5R, despite its similarity to proteins of the regulators of complement activation (RCA) family, or to any of the other EEV proteins tested (A34R, A36R, and A56R gene products). EEV was sensitive to complement when the virus was grown in one species and challenged with complement from a different species, suggesting that complement resistance might be mediated by host RCA incorporated into the EEV outer envelope. This hypothesis was confirmed by several observations: (i) immunoblot analysis revealed that cellular membrane proteins CD46, CD55, CD59, CD71, CD81, and major histocompatibility complex class I antigen were detected in purified EEV but not IMV; (ii) immunoelectron microscopy revealed cellular RCA on the surface of EEV retained on the cell surface; and (iii) EEV derived from rat cells expressing the human RCA CD55 or CD55 and CD59 were more resistant to human complement than EEV derived from control rat cells that expressed neither CD55 nor CD59. These data justify further analysis of the roles of these (and possible other) cellular proteins in EEV biology.
Publication
Journal: Journal of Virology
March/12/1995
Abstract
A coxsackievirus B3 (CB3) isolate adapted to growth in RD cells shows an alteration in cell tropism as a result of its capacity to bind a 70-kDa cell surface molecule expressed on these cells. We now show that this molecule is the complement regulatory protein, decay-accelerating factor (DAF) (CD55). Anti-DAF antibodies prevented CB3 attachment to the cell surface. Radiolabeled CB3 adapted to growth in RD cells bound to CHO cells transfected with human DAF, whereas CB3 (strain Nancy), the parental strain, did not bind to DAF transfectants. These results indicate that growth of CB3 in RD cells selected for a virus strain that uses DAF for cell surface attachment.
Publication
Journal: Journal of Experimental Medicine
April/10/2005
Abstract
Decay-accelerating factor ([DAF] CD55) is a glycosylphosphatidylinositol-anchored membrane inhibitor of complement with broad clinical relevance. Here, we establish an additional and unexpected role for DAF in the suppression of adaptive immune responses in vivo. In both C57BL/6 and BALB/c mice, deficiency of the Daf1 gene, which encodes the murine homologue of human DAF, significantly enhanced T cell responses to active immunization. This phenotype was characterized by hypersecretion of interferon (IFN)-gamma and interleukin (IL)-2, as well as down-regulation of the inhibitory cytokine IL-10 during antigen restimulation of lymphocytes in vitro. Compared with wild-type mice, Daf1(-/-) mice also displayed markedly exacerbated disease progression and pathology in a T cell-dependent experimental autoimmune encephalomyelitis (EAE) model. However, disabling the complement system in Daf1(-/-) mice normalized T cell secretion of IFN-gamma and IL-2 and attenuated disease severity in the EAE model. These findings establish a critical link between complement and T cell immunity and have implications for the role of DAF and complement in organ transplantation, tumor evasion, and vaccine development.
Publication
Journal: Traffic
July/12/2010
Abstract
Clathrin-independent endocytosis (CIE) allows internalization of plasma membrane proteins lacking clathrin-targeting sequences, such as the major histocompatibility complex class I protein (MHCI), into cells. After internalization, vesicles containing MHCI fuse with transferrin-containing endosomes generated from clathrin-dependent endocytosis. In HeLa cells, MHCI is subsequently routed to late endosomes or recycled back out to the plasma membrane (PM) in distinctive tubular carriers. Arf6 is associated with endosomal membranes carrying CIE cargo and expression of an active form of Arf6 leads to the generation of vacuolar structures that trap CIE cargo immediately after endocytosis, blocking the convergence with transferrin-containing endosomes. We isolated these trapped vacuolar structures and analyzed their protein composition by mass spectrometry. Here we identify and validate six new endogenous cargo proteins (CD44, CD55, CD98, CD147, Glut1, and ICAM1) that use CIE to enter cells. CD55 and Glut1 appear to closely parallel the trafficking of MHCI, merging with transferrin endosomes before entering the recycling tubules. In contrast, CD44, CD98, and CD147 appear to directly enter the recycling tubules and by-pass the merge with EEA1-positive, transferrin-containing endosomes. This divergent itinerary suggests that sorting may occur along this CIE pathway. Furthermore, the identification of new cargo proteins will assist others studying CIE in different cell types and tissues.
Publication
Journal: Journal of Experimental Medicine
March/19/1997
Abstract
CD97 is an activation-induced antigen on leukocytes with a seven-span transmembrane (7-TM) region homologous to the secretin receptor superfamily. However, in contrast to this group of peptide hormone receptors, CD97 has an extended extracellular region with three EGF domains at the NH2 terminus, two of them with a calcium binding site. By demonstrating that lymphocytes and erythrocytes specifically adhere to CD97-transfected COS cells we here show that CD97 in parallel with its molecular evolution has acquired the ability to bind cellular ligands. A mAb selected on its capacity to block the adhesion between CD97 transfectants and red cells was found to be directed to the NH2-terminal short consensus repeat (SCR) of decay accelerating factor (DAF, CD55), a regulatory protein of the complement cascade. The specificity of the interaction of CD97 with CD55 was established by the observation that erythrocytes that lack CD55, obtained from patients with paroxysmal nocturnal hemoglobinuria (PNH) or the CD55, phenotype Inab, failed to adhere to CD97 transfectants. This is the first demonstration of a cellular ligand for a 7-TM receptor.
Publication
Journal: Journal of Immunology
October/19/1992
Abstract
A significant fraction of human glycosyl-phosphatidylinositol-anchored Ag CD59, CD55, CD48, and CDw52 is present in several cell lines tested (HPB-ALL, Jurkat, HL-60, Raji) in very large noncovalent complexes relatively resistant to dissociation by detergents. These complexes also contain some (glyco)lipids, such as these bearing the CD15, CDw17, and CDw65 determinants, and several intracellular components including protein tyrosine kinases and probably several of their potential substrates. Preclearing of the detergent lysates with different antibodies indicated that all these components are present jointly in a common single type of complexes the size of which is around 100 nm (molecular mass in the range of at least tens of thousands kilodaltons) as determined by ultrafiltration and gel chromatography. These results indicate the existence of cell-surface domains, specifically enriched in the above listed components, that may play a critical role in the so far poorly understood phenomenon of cell activation mediated through many different glycosyl-phosphatidylinositol-anchored (glyco)proteins and glycolipids.
Publication
Journal: FASEB Journal
January/6/2008
Abstract
Migration of neutrophils (PMN) across epithelia is a pathological hallmark of numerous mucosal diseases. Whereas lesions at mucosal surfaces are generally self-limiting, endogenous mechanisms of resolution are incompletely understood. Previous studies revealed that resolvins directly act on PMN to attenuate transendothelial migration, less is known about the influence of resolvins on PMN-epithelial interactions and whether they act on epithelia. We studied the dynamics of resolvin E1 (RvE1) actions on leukocyte transepithelial migration. PMN exposure to RvE1 or chemerin (peptide agonist of ChemR23) reduced transepithelial migration in a concentration-dependent manner. Conversely, activation of epithelial ChemR23 promoted apical clearance of PMN. A nonbiased screen of known PMN ligands expressed on epithelial cells in response to RvE1 revealed selective induction of CD55, an apically expressed antiadhesive molecule. CD55 promoter analysis demonstrated that both RvE1 and chemerin activate the CD55 promoter. Inhibition of CD55 by neutralizing antibody prevented RvE1-dependent augmentation of apical PMN clearance. Taken together these findings implicate a "two-hit" model of inflammatory resolution, whereby activation of the PMN RvE1 receptor attenuates transepithelial migration and subsequent actions on the epithelium promote CD55-dependent clearance of PMN across the epithelial cell surface promoting active inflammatory resolution.
Publication
Journal: European Journal of Immunology
April/30/2003
Abstract
Exosomes are secreted nanometer-sized vesicles derived from antigen-presenting cells, which have attracted recent interest as they likely play important roles in immune regulation, and their use as cell-free tools for immunotherapy has been proposed. Liposomes used clinically as transport vehicles can activate the complement system, leading to their rapid degradation and significant inflammatory toxicity. The use of isolated exosomes in therapy, therefore, may also elicit complement activation, reducing their potential efficacy. We have examined the expression and functional roles of the membrane regulators of complement (CD46, CD55 and CD59) on antigen-presenting cell-derived exosomes. Exosomes express the glycosylphosphatidylinositol (GPI)-anchored regulators CD55 and CD59, but not the transmembrane protein CD46. Antibody blocking of CD55 in the presence of sensitizing antibody (w6/32) and human serum resulted in increased C3b deposition and significantly increased exosome lysis. Blockade of CD59 also resulted in significant lysis, while blocking both CD55 and CD59 increased lysis still further. We conclude that exosomes express GPI-anchored complement regulators in order to permit their survival in the extracellular environment.
Publication
Journal: Journal of Immunology
November/24/1992
Abstract
Decay accelerating factor (DAF, CD55) is a glycophospholipid-anchored membrane protein that protects cells from complement-mediated damage by inhibiting the formation and accelerating the decay of C3/C5 convertases. DAF deletion mutants lacking each of the four short consensus repeats (SCR) or the serine/threonine-rich region (S/T) were created by site-directed mutagenesis. These deletion mutants were expressed by stable transfection in Chinese hamster ovary cells for the purpose of mapping important structural and functional sites in DAF. The epitopes on DAF for 16 murine mAb were mapped by immunoprecipitation studies as follows: SCR1, 6; SCR2, 3; SCR3, 3; SCR4, 3; S/T, 1. Testing of 13 mAb showed complete blocking of DAF function only by 1C6 and 1H4, both directed at SCR3. The single N-linked glycosylation site was confirmed at a location between SCR1 and SCR2, and the multiple O-linked oligosaccharides were localized to the S/T region. Functional activity of DAF mutants was assessed by the ability of these transfected constructs to protect Chinese hamster ovary cells from cytotoxicity induced by rabbit antibody plus human complement. Removal of SCR1 had no effect on DAF function, but individual deletion of SCR2, SCR3, or SCR4 totally abolished DAF function. Surprisingly, deletion of the S/T region totally abrogated DAF function, but this could be restored by a fusion construct placing the four SCR domains of DAF onto the HLA-B44 molecule, implying that the O-glycosylated S/T region serves as an important but nonspecific spacer projecting the DAF functional domains above the plasma membrane. Overall, the creation of DAF deletion mutants has elucidated important structure-function relations in the DAF molecule.
Publication
Journal: Journal of Biological Chemistry
October/19/2009
Abstract
Uncontrolled activation of the alternative pathway of complement is thought to be associated with age-related macular degeneration (AMD). The alternative pathway is continuously activated in the fluid phase, and tissue surfaces require continuous complement inhibition to prevent spontaneous autologous tissue injury. Here, we examined the effects of oxidative stress on the ability of immortalized human retinal pigment epithelial cells (ARPE-19) to regulate complement activation on their cell surface. Combined treatment with H(2)O(2) (to induce oxidative stress) and complement-sufficient serum was found to disrupt the barrier function of stable ARPE-19 monolayers as determined by transepithelial resistance (TER) measurements. Neither treatment alone had any effect. TER reduction was correlated with increased cell surface deposition of C3, and could be prevented by using C7-depleted serum, an essential component of the terminal complement pathway. Treatment with H(2)O(2) reduced surface expression of the complement inhibitors DAF, CD55, and CD59, and impaired regulation at the cell surface by factor H present within the serum. Combined treatment of the monolayers with H(2)O(2) and serum elicited polarized secretion of vascular epidermal growth factor (VEGF). Both, secretion of VEGF and TER reduction could be attenuated using either an alternative pathway inhibitor or by blocking VEGF receptor-1/2 signaling. Regarded together, these studies demonstrate that oxidative stress reduces regulation of complement on the surface of ARPE-19 cells, increasing complement activation. This sublytic activation results in VEGF release, which mediates disruption of the cell monolayer. These findings link oxidative stress, complement activation, and apical VEGF release, which have all been associated with the pathogenesis of AMD.
Publication
Journal: Journal of Experimental Medicine
January/27/2000
Abstract
The protozoan parasite Toxoplasma gondii actively penetrates its host cell by squeezing through a moving junction that forms between the host cell plasma membrane and the parasite. During invasion, this junction selectively controls internalization of host cell plasma membrane components into the parasite-containing vacuole. Membrane lipids flowed past the junction, as shown by the presence of the glycosphingolipid G(M1) and the cationic lipid label 1. 1'-dihexadecyl-3-3'-3-3'-tetramethylindocarbocyanine (DiIC(16)). Glycosylphosphatidylinositol (GPI)-anchored surface proteins, such as Sca-1 and CD55, were also readily incorporated into the parasitophorous vacuole (PV). In contrast, host cell transmembrane proteins, including CD44, Na(+)/K(+) ATPase, and beta1-integrin, were excluded from the vacuole. To eliminate potential differences in sorting due to the extracellular domains, parasite invasion was examined in host cells transfected with recombinant forms of intercellular adhesion molecule 1 (ICAM-1, CD54) that differed in their mechanism of membrane anchoring. Wild-type ICAM-1, which contains a transmembrane domain, was excluded from the PV, whereas both GPI-anchored ICAM-1 and a mutant of ICAM-1 missing the cytoplasmic tail (ICAM-1-Cyt(-)) were readily incorporated into the PV membrane. Our results demonstrate that during host cell invasion, Toxoplasma selectively excludes host cell transmembrane proteins at the moving junction by a mechanism that depends on their anchoring in the membrane, thereby creating a nonfusigenic compartment.
load more...