Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(176)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: PLoS Genetics
October/26/2009
Abstract
The evidence for the existence of genetic susceptibility variants for the common form of hypertension ("essential hypertension") remains weak and inconsistent. We sought genetic variants underlying blood pressure (BP) by conducting a genome-wide association study (GWAS) among African Americans, a population group in the United States that is disproportionately affected by hypertension and associated complications, including stroke and kidney diseases. Using a dense panel of over 800,000 SNPs in a discovery sample of 1,017 African Americans from the Washington, D.C., metropolitan region, we identified multiple SNPs reaching genome-wide significance for systolic BP in or near the genes: PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H. Two of these genes, SLC24A4 (a sodium/potassium/calcium exchanger) and CACNA1H (a voltage-dependent calcium channel), are potential candidate genes for BP regulation and the latter is a drug target for a class of calcium channel blockers. No variant reached genome wide significance for association with diastolic BP (top scoring SNP rs1867226, p = 5.8 x 10(-7)) or with hypertension as a binary trait (top scoring SNP rs9791170, p = 5.1 x 10(-7)). We replicated some of the significant SNPs in a sample of West Africans. Pathway analysis revealed that genes harboring top-scoring variants cluster in pathways and networks of biologic relevance to hypertension and BP regulation. This is the first GWAS for hypertension and BP in an African American population. The findings suggests that, in addition to or in lieu of relying solely on replicated variants of moderate-to-large effect reaching genome-wide significance, pathway and network approaches may be useful in identifying and prioritizing candidate genes/loci for further experiments.
Publication
Journal: Circulation Research
August/12/1998
Abstract
Voltage-activated Ca2+ channels exist as multigene families that share common structural features. Different Ca2+ channels are distinguished by their electrophysiology and pharmacology and can be classified as either low or high voltage-activated channels. Six alpha1 subunit genes cloned previously code for high voltage-activated Ca2+ channels; therefore, we have used a database search strategy to identify new Ca2+ channel genes, possibly including low voltage-activated (T-type) channels. A novel expressed sequence-tagged cDNA clone of alpha1G was used to screen a cDNA library, and in the present study, we report the cloning of alpha1H (or CavT.2), a low voltage-activated Ca2+ channel from human heart. Northern blots of human mRNA detected more alpha1H expression in peripheral tissues, such as kidney and heart, than in brain. We mapped the gene, CACNA1H, to human chromosome 16p13.3 and mouse chromosome 17. Expression of alpha1H in HEK-293 cells resulted in Ca2+ channel currents displaying voltage dependence, kinetics, and unitary conductance characteristic of native T-type Ca2+ channels. The alpha1H channel is sensitive to mibefradil, a nondihydropyridine Ca2+ channel blocker, with an IC50 of 1.4 micromol/L, consistent with the reported potency of mibefradil for T-type Ca2+ channels. Together with alpha1G, a rat brain T-type Ca2+ channel also cloned in our laboratory, these genes define a unique family of Ca2+ channels.
Publication
Journal: Annals of Neurology
January/4/2004
Abstract
Direct sequencing of exons 3 to 35 and the exon-intron boundaries of the CACNA1H gene was conducted in 118 childhood absence epilepsy patients of Han ethnicity recruited from North China. Sixty-eight variations have been detected in the CACNA1H gene, and, among the variations identified, 12 were missense mutations and only found in 14 of the 118 patients in a heterozygous state, but not in any of 230 unrelated controls. The identified missense mutations occurred in the highly conserved residues of the T-type calcium channel gene. Our results suggest that CACNA1H might be an important susceptibility gene involved in the pathogenesis of childhood absence epilepsy.
Publication
Journal: Journal of Biological Chemistry
October/15/2006
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by impaired social interaction, communication skills, and restricted and repetitive behavior. The genetic causes for autism are largely unknown. Previous studies implicate CACNA1C (L-type Ca(V)1.2) calcium channel mutations in a disorder associated with autism (Timothy syndrome). Here, we identify missense mutations in the calcium channel gene CACNA1H (T-type Ca(V)3.2) in 6 of 461 individuals with ASD. These mutations are located in conserved and functionally relevant domains and are absent in 480 ethnically matched controls (p = 0.014, Fisher's exact test). Non-segregation within the pedigrees between the mutations and the ASD phenotype clearly suggest that the mutations alone are not responsible for the condition. However, functional analysis shows that all these mutations significantly reduce Ca(V)3.2 channel activity and thus could affect neuronal function and potentially brain development. We conclude that the identified mutations could contribute to the development of the ASD phenotype.
Publication
Journal: American Journal of Medical Genetics, Part A
March/12/2008
Abstract
We describe a nondysmorphic patient with developmental delay and autism spectrum disorder who has a missense mutation in the Jumonji AT-rich interactive domain 1C (JARID1C) gene. This child first presented at 30 months of age with stereotyped and repetitive behaviors, impairment in social reciprocity and in the use of multiple nonverbal behaviors, and developmental delay primarily in the language domain. A diagnosis of autism was made and subsequently confirmed at the current age of 47 months. Cytogenetic and fragile X studies were normal. Mutational analysis revealed a novel missense mutation in exon 16 of the JARID1C gene that results in an arginine to tryptophan substitution at amino acid 766 (R766W). Sequence alignment analysis with multiple available eukaryotic sequences including the homologous proteins of mouse and zebrafish demonstrated that the affected amino acid is conserved. JARID1C has not previously been implicated in autism susceptibility. Recent novel molecular evidence suggests that it is a histone demethylase specific for di- and trimethylated histone 3 lysine 4 (H3K4) and functions as a transcriptional repressor by fostering REST-mediated neuronal gene regulation. The JARID1C-regulated genes SCN2A, CACNA1H, BDNF, and SLC18A1 have previously been associated with autism and cognitive dysfunction. This patient brings the total number of reported JARID1C mutations to 14. This presentation both extends the range of neurocognitive phenotypes attributable to mutations in this gene and illustrates the importance of molecular studies and DNA sequence analysis for accurate diagnosis of monogenic causes of autism.
Publication
Journal: Journal of Neuroscience
April/7/2009
Abstract
Low-voltage-activated, or T-type, calcium (Ca(2+)) channels are believed to play an essential role in the generation of absence seizures in the idiopathic generalized epilepsies (IGEs). We describe a homozygous, missense, single nucleotide (G to C) mutation in the Ca(v)3.2 T-type Ca(2+) channel gene (Cacna1h) in the genetic absence epilepsy rats from Strasbourg (GAERS) model of IGE. The GAERS Ca(v)3.2 mutation (gcm) produces an arginine to proline (R1584P) substitution in exon 24 of Cacna1h, encoding a portion of the III-IV linker region in Ca(v)3.2. gcm segregates codominantly with the number of seizures and time in seizure activity in progeny of an F1 intercross. We have further identified two major thalamic Cacna1h splice variants, either with or without exon 25. gcm introduced into the splice variants acts "epistatically," requiring the presence of exon 25 to produce significantly faster recovery from channel inactivation and greater charge transference during high-frequency bursts. This gain-of-function mutation, the first reported in the GAERS polygenic animal model, has a novel mechanism of action, being dependent on exonic splicing for its functional consequences to be expressed.
Publication
Journal: Annals of Neurology
January/21/2008
Abstract
OBJECTIVE
The relationship between genetic variation in the T-type calcium channel gene CACNA1H and childhood absence epilepsy is well established. The purpose of this study was to investigate the range of epilepsy syndromes for which CACNA1H variants may contribute to the genetic susceptibility architecture and determine the electrophysiological effects of these variants in relation to proposed mechanisms underlying seizures.
METHODS
Exons 3 to 35 of CACNA1H were screened for variants in 240 epilepsy patients (167 unrelated) and 95 control subjects by single-stranded conformation analysis followed by direct sequencing. Cascade testing of families was done by sequencing or single-stranded conformation analysis. Selected variants were introduced into the CACNA1H protein by site-directed mutagenesis. Constructs were transiently transfected into human embryo kidney cells, and electrophysiological data were acquired.
RESULTS
More than 100 variants were detected, including 19 novel variants leading to amino acid changes in subjects with phenotypes including childhood absence, juvenile absence, juvenile myoclonic and myoclonic astatic epilepsies, as well as febrile seizures and temporal lobe epilepsy. Electrophysiological analysis of 11 variants showed that 9 altered channel properties, generally in ways that would be predicted to increase calcium current.
CONCLUSIONS
Variants in CACNA1H that alter channel properties are present in patients with various generalized epilepsy syndromes. We propose that these variants contribute to an individual's susceptibility to epilepsy but are not sufficient to cause epilepsy on their own. The genetic architecture is dominated by rare functional variants; therefore, CACNA1H would not be easily identified as a susceptibility gene by a genome-wide case-control study seeking a statistical association.
Publication
Journal: Journal of Neuroscience
March/21/2006
Abstract
Sequencing of the T-type Ca2+ channel gene CACNA1H revealed 12 nonsynonymous single nucleotide polymorphisms (SNPs) that were found only in childhood absence epilepsy (CAE) patients. One SNP, G773D, was found in two patients. The present study reports the finding of a third patient with this SNP, as well as analysis of their parents. Because of the role of T-channels in determining the intrinsic firing patterns of neurons involved in absence seizures, it was suggested that these SNPs might alter channel function. The goal of the present study was to test this hypothesis by introducing these polymorphisms into a human Ca(v)3.2a cDNA and then study alterations in channel behavior using whole-cell patch-clamp recording. Eleven SNPs altered some aspect of channel gating. Computer simulations predict that seven of the SNPs would increase firing of neurons, with three of them inducing oscillations at similar frequencies, as observed during absence seizures. Three SNPs were predicted to decrease firing. Some CAE-specific SNPs (e.g., G773D) coexist with SNPs also found in controls (R788C); therefore, the effect of these polymorphisms were studied. The R788C SNP altered activity in a manner that would also lead to enhanced burst firing of neurons. The G773D-R788C combination displayed different behavior than either single SNP. Therefore, common polymorphisms can alter the effect of CAE-specific SNPs, highlighting the importance of sequence background. These results suggest that CACNA1H is a susceptibility gene that contributes to the development of polygenic disorders characterized by thalamocortical dysrhythmia, such as CAE.
Publication
Journal: eLife
January/13/2016
Abstract
Many Mendelian traits are likely unrecognized owing to absence of traditional segregation patterns in families due to causation by de novo mutations, incomplete penetrance, and/or variable expressivity. Genome-level sequencing can overcome these complications. Extreme childhood phenotypes are promising candidates for new Mendelian traits. One example is early onset hypertension, a rare form of a global cause of morbidity and mortality. We performed exome sequencing of 40 unrelated subjects with hypertension due to primary aldosteronism by age 10. Five subjects (12.5%) shared the identical, previously unidentified, heterozygous CACNA1H(M1549V) mutation. Two mutations were demonstrated to be de novo events, and all mutations occurred independently. CACNA1H encodes a voltage-gated calcium channel (CaV3.2) expressed in adrenal glomerulosa. CACNA1H(M1549V) showed drastically impaired channel inactivation and activation at more hyperpolarized potentials, producing increased intracellular Ca(2+), the signal for aldosterone production. This mutation explains disease pathogenesis and provides new insight into mechanisms mediating aldosterone production and hypertension.
Publication
Journal: Journal of Biological Chemistry
May/18/2004
Abstract
Childhood absence epilepsy (CAE) is a type of generalized epilepsy observed in 2-10% of epileptic children. In a recent study by Chen et al. (Chen, Y., Lu, J., Pan, H., Zhang, Y., Wu, H., Xu, K., Liu, X., Jiang, Y., Bao, X., Yao, Z., Ding, K., Lo, W. H., Qiang, B., Chan, P., Shen, Y., and Wu, X. (2003) Ann. Neurol. 54, 239-243) 12 missense mutations were identified in the CACNA1H (Ca(v)3.2) gene in 14 of 118 patients with CAE but not in 230 control individuals. We have functionally characterized five of these mutations (F161L, E282K, C456S, V831M, and D1463N) using rat Ca(v)3.2 and whole-cell patch clamp recordings in transfected HEK293 cells. Two of the mutations, F161L and E282K, mediated an approximately 10-mV hyperpolarizing shift in the half-activation potential. Mutation V831M caused a approximately 50% slowing of inactivation relative to control and shifted half-inactivation potential approximately 10 mV toward more depolarized potentials. Mean time to peak was significantly increased by mutation V831M but was unchanged for all others. No resolvable changes in the parameters of the IV relation or current kinetics were observed with the remaining mutations. The findings suggest that several of the Ca(v)3.2 mutants allow for greater calcium influx during physiological activation and in the case of F161L and E282K can result in channel openings at more hyperpolarized (close to resting) potentials. This may underlie the propensity for seizures in patients with CAE.
Publication
Journal: Human Molecular Genetics
August/15/2006
Abstract
Highly alternatively spliced genes may provide complex targets for disease mutations. Structural changes created by missense mutations may differentially affect the activity of alternative gene products, whereas missense, silent and non-coding mutations may alter developmental regulation of splice variant expression. CACNA1H is a human gene encoding Ca(v)3.2 low-voltage-activated, T-type calcium channels associated with bursting behavior in neurons and has been linked to more than 30 mutations apparently predisposing to childhood absence epilepsy (CAE) and other idiopathic generalized epilepsies (IGEs). Biophysical properties, including the effects of missense mutations, have been evaluated previously for a single splice form of Ca(v)3.2 expressed in transformed cell lines. We here show that CACNA1H is alternatively spliced at 12-14 sites, capable of generating both functional and non-functional transcripts. Variable cytoplasmic and extracellular protein domains point to likely differences in gating behavior, sensitivity to neuromodulation and interactions with extracellular matrix. Biophysical profiles of selected physiological Ca(v)3.2 forms reveal variations in kinetics and steady-state gating parameters, most likely to affect membrane firing. These were comparable to or larger than changes reported for previously studied mutations. Missense CAE and IGE mutations were clustered near segments associated with anomalous splicing. Missense and silent mutations were found to destroy, create or change the regulatory specificity of predicted exonic splicing enhancer sequences that may control splicing regulation. We discuss a paradigm for CACNA1H expression of Ca(v)3.2 subunits, which may influence future basic and clinical studies.
Publication
Journal: Journal of Neuroscience
February/1/2007
Abstract
Calcium currents via low-voltage-activated T-type channels mediate burst firing, particularly in thalamic neurons. Considerable evidence supports the hypothesis that overactive T-channels may contribute to thalamocortical dysrhythmia, including absence epilepsy. Single nucleotide polymorphisms in one of the T-channel genes (CACNA1H, which encodes Ca(v)3.2) are associated with childhood absence epilepsy in a Chinese population. Because only a fraction of these polymorphisms are predicted to increase channel activity and neuronal firing, we hypothesized that other channel properties may be affected. Here we describe that all the polymorphisms clustered in the intracellular loop connecting repeats I and II (I-II loop) increase the surface expression of extracellularly tagged Ca(v)3.2 channels. The functional domains within the I-II loop were then mapped by deletion analysis. The first 62 amino acids of the loop (post IS6) are involved in regulating the voltage dependence of channel gating and inactivation. Similarly, the last 15 amino acids of the loop (pre IIS1) are involved in channel inactivation. In contrast, the central region of I-II loop regulates surface expression, with no significant effect on channel biophysics. Electrophysiology, luminometry, fluorescence-activated cell sorting measurements, and confocal microscopy studies demonstrate that deletion of this central region leads to enhanced surface expression of channels from intracellular compartments to the plasma membrane. These results provide novel insights into how CACNA1H polymorphisms may contribute to Ca(v)3.2 channel overactivity and consequently to absence epilepsy and establish the I-II loop as an important regulator of Ca(v)3.2 channel function and expression.
Publication
Journal: Pflugers Archiv European Journal of Physiology
September/12/2010
Abstract
It is well established that idiopathic generalized epilepsies (IGEs) show a polygenic origin and may arise from dysfunction of various types of voltage- and ligand-gated ion channels. There is an increasing body of literature implicating both high- and low-voltage-activated (HVA and LVA) calcium channels and their ancillary subunits in IGEs. Cav2.1 (P/Q-type) calcium channels control synaptic transmission at presynaptic nerve terminals, and mutations in the gene encoding the Cav2.1 alpha1 subunit (CACNA1A) have been linked to absence seizures in both humans and rodents. Similarly, mutations and loss of function mutations in ancillary HVA calcium channel subunits known to co-assemble with Cav2.1 result in IGE phenotypes in mice. It is important to note that in all these mouse models with mutations in HVA subunits, there is a compensatory increase in thalamic LVA currents which likely leads to the seizure phenotype. In fact, gain-of-function mutations have been identified in Cav3.2 (an LVA or T-type calcium channel encoded by the CACNA1H gene) in patients with congenital forms of IGEs, consistent with increased excitability of neurons as a result of enhanced T-type channel function. In this paper, we provide a broad overview of the roles of voltage-gated calcium channels, their mutations, and how they might contribute to the river that terminates in epilepsy.
Publication
Journal: Cell Calcium
October/5/2006
Abstract
Molecular cloning of the low voltage-gated, T-type, calcium channel family opened new avenues of research into their structure-function, distribution, pharmacology, and regulation. Cloning of mammalian cDNAs led to the identification of three T-channel genes: CACNA1G, encoding Cav3.1; CACNA1H, encoding Cav3.2; and CACNA1I, encoding Cav3.3. This allowed sequencing of these genes in absence epilepsy patients, and the identification of single nucleotide polymorphisms (SNPs) that alter channel activity. Their distribution in thalamic nuclei, coupled with the physiological role they play in thalamic oscillations, leads to the conclusion that SNPs in T-channel genes may contribute to neurological disorders characterized by thalamocortical dysrhythmia, such as generalized epilepsy. This section reviews the structure of T-channels, how splicing affects structure and function, how SNPs alter channel activity, and how high voltage-activated auxiliary subunits affect T-channels.
Publication
Journal: Epilepsy and Behavior
October/12/2009
Abstract
Absence seizures with bilateral spike-wave (SW) complexes at 3Hz are divided into the childhood form, with onset at around 6 years of age, and the juvenile form, with onset usually at 12 years of age. These seizures typically last 9-12s and, at times, are activated by hyperventilation and occasionally by photic stimulation. Generalized tonic-clonic (GTC) seizures may also occur, especially in the juvenile form. There may be cognitive changes, in addition to linguistic and behavioral problems. Possible mechanisms for epileptogenesis may involve GABAergic systems, but especially T-calcium channels. The thalamus, especially the reticular nucleus, plays a major role, as does the frontal cortex, mainly the dorsolateral and orbital frontal areas, to the extent that some investigators have concluded that absence seizures are not truly generalized, but rather have selective cortical networks, mainly ventromesial frontal areas and the somatosensory cortex. The latter network is a departure from the more popular concept of a generalized epilepsy. Between the "centrencephalic" and "corticoreticular" theories, a "unified" theory is presented. Proposed genes include T-calcium channel gene CACNA1H, likely a susceptible gene in the Chinese Han population and a contributory gene in Caucasians. Electroencephalography has revealed an interictal increase in prefrontal activity, essential for the buildup of the ictal SW complexes maximal in that region. Infraslow activity can also be seen during ictal SW complexes. For treatment, counter to common belief, ethosuximide may not increase GTC seizures, as it reduces low-threshold T-calcium currents in thalamic neurons. Valproic acid and lamotrigine are also first-line medications. In addition, zonisamide and levetiracetam can be very helpful in absence epilepsy.
Publication
Journal: Journal of Immunology
July/19/2000
Abstract
Previously, this laboratory identified clusters of alpha-, beta-, and mast cell protease-7-like tryptase genes on human chromosome 16p13.3. The present work characterizes adjacent genes encoding novel serine proteases, termed gamma-tryptases, and generates a refined map of the multitryptase locus. Each gamma gene lies between an alpha1H Ca2+ channel gene (CACNA1H) and a betaII- or betaIII-tryptase gene and is approximately 30 kb from polymorphic minisatellite MS205. The tryptase locus also contains at least four tryptase-like pseudogenes, including mastin, a gene expressed in dogs but not in humans. Genomic DNA blotting results suggest that gammaI- and gammaII-tryptases are alleles at the same site. betaII- and betaIII-tryptases appear to be alleles at a neighboring site, and alphaII- and betaI-tryptases appear to be alleles at a third site. gamma-Tryptases are transcribed in lung, intestine, and in several other tissues and in a mast cell line (HMC-1) that also expresses gamma-tryptase protein. Immunohistochemical analysis suggests that gamma-tryptase is expressed by airway mast cells. gamma-Tryptase catalytic domains are approximately 48% identical with those of known mast cell tryptases and possess mouse homologues. We predict that gamma-tryptases are glycosylated oligomers with tryptic substrate specificity and a distinct mode of activation. A feature not found in described tryptases is a C-terminal hydrophobic domain, which may be a membrane anchor. Although the catalytic domains contain tryptase-like features, the hydrophobic segment and intron-exon organization are more closely related to another recently described protease, prostasin. In summary, this work describes gamma-tryptases, which are novel members of chromosome 16p tryptase/prostasin gene families. Their unique features suggest possibly novel functions.
Publication
Journal: Annals of Neurology
May/6/2004
Publication
Journal: Blood
May/10/2004
Abstract
DNA methylation plays critical roles in the development and differentiation of mammalian cells, and its dysregulation has been implicated in oncogenesis. This study was designed to determine whether DNA hypomethylation-associated aberrant gene expression is involved in adult T-cell leukemia (ATL) leukemogenesis. We isolated hypomethylated DNA regions of ATL cells compared with peripheral blood mononuclear cells from a carrier by a methylated CpG-island amplification/representational difference analysis method. The DNA regions identified contained MEL1, CACNA1H, and Nogo receptor genes. Sequencing using sodium bisulfite-treated genomic DNAs revealed the decreased methylated CpG sites, confirming that this method detected hypomethylated DNA regions. Moreover, these hypomethylated genes were aberrantly transcribed. Among them, MEL1S, an alternatively spliced form of MEL1 lacking the PR (positive regulatory domain I binding factor 1 and retinoblastoma-interacting zinc finger protein) domain, was frequently transcribed in ATL cells, and the transcriptional initiation sites were identified upstream from exons 4 and 6. Transfection of MEL1S into CTLL-2 cells conferred resistance against transforming growth factor beta (TGF-beta), suggesting that aberrant expression of MEL1S was associated with dysregulation of TGF-beta-mediated signaling. Although Tax renders cells resistant to TGF-beta, Tax could not be produced in most fresh ATL cells, in which MEL1S might be responsible for TGF-beta resistance. Our results suggest that aberrant gene expression associated with DNA hypomethylation is implicated in leukemogenesis of ATL.
Publication
Journal: CNS and Neurological Disorders - Drug Targets
January/10/2007
Abstract
This review summarizes recent progress on the molecular biology of low voltage-gated, T-type, calcium channels. The genes encoding these channels were identified by molecular cloning of cDNAs that were similar in sequence to the alpha1 subunit of high voltage-activated Ca2+ channels. Three T-channel genes were identified: CACNA1G, encoding Cav3.1; CACNA1H, encoding Cav3.2; and CACNA1I, encoding Cav3.3. Recent studies have focused on how these genes give rise to alternatively spliced transcripts, and how this splicing affects channel activity. A second area of focus is on how single nucleotide polymorphisms (SNPs) alter channel activity. Based on their distribution in thalamic nuclei, coupled with the physiological role they play in thalamic oscillations, leads to the conclusion that SNPs in T-channel genes may contribute to neurological disorders characterized by thalamocortical dysrhythmia, such as generalized epilepsy.
Publication
Journal: Annals of Neurology
June/23/2005
Abstract
Heron and colleagues (Ann Neurol 2004;55:595-596) identified three missense mutations in the Cav3.2 T-type calcium channel gene (CACNA1H) in patients with idiopathic generalized epilepsy. None of the variants were associated with a specific epilepsy phenotype and were not found in patients with juvenile absence epilepsy or childhood absence epilepsy. Here, we introduced and functionally characterized these three mutations using transiently expressed human Cav3.2 channels. Two of the mutations exhibited functional changes that are consistent with increased channel function. Taken together, these findings along with previous reports, strongly implicate CACNA1H as a susceptibility gene in complex idiopathic generalized epilepsy.
Publication
Journal: Journal of Physiology
October/19/2014
Abstract
T-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca(2+) channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy. We and others have found that these mutations may influence neuronal excitability either by altering the biophysical properties of the channels or by increasing their surface expression. The goals of the present study were to investigate the excitability of neurons expressing Cav3.2 with the epilepsy mutation, C456S, and to elucidate the mechanisms by which it influences neuronal properties. We found that expression of the recombinant C456S channels substantially increased the excitability of cultured neurons by increasing the spontaneous firing rate and reducing the threshold for rebound burst firing. Additionally, we found that molecular determinants in the I-II loop (the region in which most childhood absence epilepsy-associated mutations are found) substantially increase the surface expression of T-channels but do not alter the relative distribution of channels into dendrites of cultured hippocampal neurons. Finally, we discovered that expression of C456S channels promoted dendritic growth and arborization. These effects were reversed to normal by either the absence epilepsy drug ethosuximide or a novel T-channel blocker, TTA-P2. As Ca(2+)-regulated transcription factors also increase dendritic development, we tested a transactivator trap assay and found that the C456S variant can induce changes in gene transcription. Taken together, our findings suggest that gain-of-function mutations in Cav3.2 T-type Ca(2+) channels increase seizure susceptibility by directly altering neuronal electrical properties and indirectly by changing gene expression.
Publication
Journal: Human Molecular Genetics
May/22/2006
Abstract
Common idiopathic epilepsies are, clinically and genetically, a heterogeneous group of complex seizure disorders. Seizures arise from periodic neuronal hyperexcitability of unknown cause. The genetic component is mostly polygenic, where each susceptibility gene in any given individual is likely to represent a small component of the total heritability. Two susceptibility genes have been so far identified, where genetic variation is associated with experimentally demonstrated changes in ion channel properties, consistent with seizure susceptibility. Rare variants and a polymorphic allele of the T-type calcium channel CACNA1H and a polymorphic allele and a rare variant of the GABA(A) receptor delta subunit gene have differential functional effects. We speculate that these and other as yet undiscovered susceptibility genes for complex epilepsy could act as 'modifier' loci, affecting penetrance and expressivity of the mutations of large effect in those 'monogenic' epilepsies with simple inheritance that segregate through large families. Discovery of epilepsy-associated ion channel defects in these rare families has opened the door to the discovery of the first two susceptibility genes in epilepsies with complex genetics. The susceptibility genes so far detected are not commonly involved in complex epilepsy suggesting the likelihood of considerable underlying polygenic heterogeneity.
Publication
Journal: American Journal of Physiology - Cell Physiology
May/25/2014
Abstract
Interstitial cells of Cajal (ICC) generate slow waves in gastrointestinal (GI) muscles. Previous studies have suggested that slow wave generation and propagation depends on a voltage-dependent Ca(2+) entry mechanism with the signature of a T-type Ca(2+) conductance. We studied voltage-dependent inward currents in isolated ICC. ICC displayed two phases of inward current upon depolarization: a low voltage-activated inward current and a high voltage-activated current. The latter was of smaller current density and blocked by nicardipine. Ni(2+) (30 μM) or mibefradil (1 μM) blocked the low voltage-activated current. Replacement of extracellular Ca(2+) with Ba(2+) did not affect the current, suggesting that either charge carrier was equally permeable. Half-activation and half-inactivation occurred at -36 and -59 mV, respectively. Temperature sensitivity of the Ca(2+) current was also characterized. Increasing temperature (20-30°C) augmented peak current from -7 to -19 pA and decreased the activation time from 20.6 to 7.5 ms [temperature coefficient (Q10) = 3.0]. Molecular studies showed expression of Cacna1g (Cav3.1) and Cacna1h (Cav3.2) in ICC. The temperature dependence of slow waves in intact jejunal muscles of wild-type and Cacna1h(-/-) mice was tested. Reducing temperature decreased the upstroke velocity significantly. Upstroke velocity was also reduced in muscles of Cacna1h(-/-) mice, and Ni(2+) or reduced temperature had little effect on these muscles. Our data show that a T-type conductance is expressed and functional in ICC. With previous studies our data suggest that T-type current is required for entrainment of pacemaker activity within ICC and for active propagation of slow waves in ICC networks.
Publication
Journal: Epilepsia
December/8/2005
Abstract
The idiopathic generalized epilepsies (IGEs) are considered to be primarily genetic in origin. They encompass a number of rare mendelian or monogenic epilepsies and more common forms which are familial but manifest as complex, non-mendelian traits. Recent advances have demonstrated that many monogenic IGEs are ion channelopathies. These include benign familial neonatal convulsions due to mutations in KCNQ2 or KCNQ3, generalized epilepsy with febrile seizures plus due to mutations in SCN1A, SCN2A, SCN1B, and GABRG2, autosomal-dominant juvenile myoclonic epilepsy (JME) due to a mutation in GABRA1 and mutations in CLCN2 associated with several IGE sub-types. There has also been progress in understanding the non-mendelian IGEs. A haplotype in the Malic Enzyme 2 gene, ME2, increases the risk for IGE in the homozygous state. Five missense mutations have been identified in EFHC1 in 6 of 44 families with JME. Rare sequence variants have been identified in CACNA1H in sporadic patients with childhood absence epilepsy in the Chinese Han population. These advances should lead to new approaches to diagnosis and treatment.
load more...