Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(336)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Cell
June/6/2011
Abstract
Glioblastomas display cellular hierarchies containing tumor-propagating glioblastoma stem cells (GSCs). STAT3 is a critical signaling node in GSC maintenance but molecular mechanisms underlying STAT3 activation in GSCs are poorly defined. Here we demonstrate that the bone marrow X-linked (BMX) nonreceptor tyrosine kinase activates STAT3 signaling to maintain self-renewal and tumorigenic potential of GSCs. BMX is differentially expressed in GSCs relative to nonstem cancer cells and neural progenitors. BMX knockdown potently inhibited STAT3 activation, expression of GSC transcription factors, and growth of GSC-derived intracranial tumors. Constitutively active STAT3 rescued the effects of BMX downregulation, supporting that BMX signals through STAT3 in GSCs. These data demonstrate that BMX represents a GSC therapeutic target and reinforces the importance of STAT3 signaling in stem-like cancer phenotypes.
Publication
Journal: British Journal of Sports Medicine
October/24/2013
Abstract
BACKGROUND
The Olympic Movement Medical Code encourages all stakeholders to ensure that sport is practised without danger to the health of the athletes. Systematic surveillance of injuries and illnesses is the foundation for developing preventive measures in sport.
OBJECTIVE
To analyse the injuries and illnesses that occurred during the Games of the XXX Olympiad, held in London in 2012.
METHODS
We recorded the daily occurrence (or non-occurrence) of injuries and illnesses (1) through the reporting of all National Olympic Committee (NOC) medical teams and (2) in the polyclinic and medical venues by the London Organising Committee of the Olympic and Paralympic Games' (LOCOG) medical staff.
RESULTS
In total, 10 568 athletes (4676 women and 5892 men) from 204 NOCs participated in the study. NOC and LOCOG medical staff reported 1361 injuries and 758 illnesses, equalling incidences of 128.8 injuries and 71.7 illnesses per 1000 athletes. Altogether, 11% and 7% of the athletes incurred at least one injury or illness, respectively. The risk of an athlete being injured was the highest in taekwondo, football, BMX, handball, mountain bike, athletics, weightlifting, hockey and badminton, and the lowest in archery, canoe slalom and sprint, track cycling, rowing, shooting and equestrian. 35% of the injuries were expected to prevent the athlete from participating during competition or training. Women suffered 60% more illnesses than men (86.0 vs 53.3 illnesses per 1000 athletes). The rate of illness was the highest in athletics, beach volleyball, football, sailing, synchronised swimming and taekwondo. A total of 310 illnesses (41%) affected the respiratory system and the most common cause of illness was infection (n=347, 46%).
CONCLUSIONS
At least 11% of the athletes incurred an injury during the games and 7% of the athletes' an illness. The incidence of injuries and illnesses varied substantially among sports. Future initiatives should include the development of preventive measures tailored for each specific sport and the continued focus among sport bodies to institute and further develop scientific injury and illness surveillance systems.
Publication
Journal: Oncogene
January/10/2001
Abstract
The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.
Authors
Publication
Journal: BioEssays
July/18/2001
Abstract
Cytoplasmic protein-tyrosine kinases (PTKs) are enzymes involved in transducing a vast number of signals in metazoans. The importance of the Tec family of kinases was immediately recognized when, in 1993, mutations in the gene encoding Bruton's tyrosine kinase (Btk) were reported to cause the human disease X-linked agammaglobulinemia (XLA). Since then, additional kinases belonging to this family have been isolated, and the availability of full genome sequences allows identification of all members in selected species enabling phylogenetic considerations. Tec kinases are endowed with Pleckstrin homology (PH) and Tec homology (TH) domains and are involved in diverse biological processes related to the control of survival and differentiation fate. Membrane translocation resulting in the activation of Tec kinases with subsequent Ca2+ release seems to be a general feature. However, nuclear translocation may also be of importance. The purpose of this essay is to characterize members of the Tec family and discuss their involvement in signaling. The three-dimensional structure, expression pattern and evolutionary aspects will also be considered.
Publication
Journal: Journal of Cell Science
September/4/2008
Abstract
Although the endocannabinoid anandamide is frequently described to act predominantly in the cardiovascular system, the molecular mechanisms of its signaling remained unclear. In human endothelial cells, two receptors for anandamide were found, which were characterized as cannabinoid 1 receptor (CB1R; CNR1) and G-protein-coupled receptor 55 (GPR55). Both receptors trigger distinct signaling pathways. It crucially depends on the activation status of integrins which signaling cascade becomes promoted upon anandamide stimulation. Under conditions of inactive integrins, anandamide initiates CB1R-derived signaling, including Gi-protein-mediated activation of spleen tyrosine kinase (Syk), resulting in NFkappaB translocation. Furthermore, Syk inhibits phosphoinositide 3-kinase (PI3K) that represents a key protein in the transduction of GPR55-originated signaling. However, once integrins are clustered, CB1R splits from integrins and, thus, Syk cannot further inhibit GPR55-triggered signaling resulting in intracellular Ca2+ mobilization from the endoplasmic reticulum (ER) via a PI3K-Bmx-phospholipase C (PLC) pathway and activation of nuclear factor of activated T-cells. Altogether, these data demonstrate that the physiological effects of anandamide on endothelial cells depend on the status of integrin clustering.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/30/1998
Abstract
Etk/Bmx is the newest member of Btk tyrosine kinase family that contains a pleckstrin homology domain, an src homology 3 domain, an src homology 2 domain, and a catalytic domain. Unlike other members of the Btk family kinases, which are mostly hemopoietic cell-specific, Etk/Bmx is preferentially expressed in epithelial and endothelial cells. We first identified this kinase in prostate cancer [Robinson, D., He, F., Pretlow, T. & Kung, H. J. (1996) Proc. Natl. Acad. Sci. USA 93, 5958-5962). Here we report that Etk is engaged in phosphatidylinositol 3-kinase (PI3-kinase) pathway and plays a pivotal role in interleukin 6 (IL-6) signaling in a prostate cancer cell line, LNCaP. Our evidence that PI3-kinase is involved in Etk activation includes: (i) Wortmannin, a specific inhibitor of PI3-kinase, abolished the activation of Etk by IL-6; (ii) a constitutively active p110 subunit of PI3-kinase was able to activate Etk in the absence of IL-6; and (iii) a dominant negative p85 subunit of PI3-kinase mutant blocked the activation of Etk by IL-6. Interestingly, IL-6 treatment of LNCaP induced a remarkable neuroendocrine-like differentiation phenotype, with neurite extension and enhanced expression of neuronal markers. This phenotype could be abrogated by the overexpression of a dominant-negative Etk, indicating Etk is required for this differentiation process.
Publication
Journal: Molecular and Cellular Biology
December/20/2001
Abstract
The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth inhibition caused by androgen ablation. (ii) Tyrosine kinases are involved in neurotrophic factor-mediated AR activation and, as such, may serve as targets of future therapeutics, to be used in conjunction with current antihormone and antineuropeptide therapies.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/24/1996
Abstract
Tyrosine kinases play central roles in the growth and differentiation of normal and tumor cells. In this study, we have analyzed the general tyrosine kinase expression profile of a prostate carcinoma (PCA) xenograft, CWR22. We describe here an improved reverse transcriptase-PCR approach that permits identification of nearly 40 different kinases in a single screening; several of these kinases are newly cloned kinases and some are novel. According to this, there are 11 receptor kinases, 9 nonreceptor kinases, and at least 7 dual kinases expressed in the xenograft tissue. The receptor kinases include erbB2, erbB3, Ret, platelet-derived growth factor receptor, sky, nyk, eph, htk, sek (eph), ddr, and tkt. The nonreceptor kinases are lck, yes, abl, arg, JakI, tyk2, and etk/bmx. Most of the dual kinases are in the mitogen-activating protein (MAP) kinase-kinase (MKK) family, which includes MKK3, MKK4, MEK5, and a novel one. As a complementary approach, we also analyzed by specific reverse transcriptase-PCR primers the expression profile of erbB/epidermal growth factor receptor family receptors in a variety of PCA specimens, cell lines, and benign prostatic hyperplasia. We found that erbB1, -2, and -3 are often coexpressed in prostate tissues, but not in erbB4. The information established here should provide a base line to study the possible growth and oncogenic signals of PCA.
Publication
Journal: American Journal of Pathology
December/19/2006
Abstract
We have previously shown that tumor necrosis factor (TNF) acts via its two receptors TNFR1 and TNFR2 to elicit distinct signaling pathways in vascular endothelial cells (ECs). Here we used a femoral artery ligation model to demonstrate that TNFR1-knockout (KO) mice had enhanced, whereas TNFR2-KO had reduced, capacity in clinical recovery, limb perfusion, and ischemic reserve capacity compared with the wild-type mice. Consistently, ischemia-initiated collateral growth (arteriogenesis) in the upper limb and capillary formation and vessel maturation (angiogenesis) in the lower limb were enhanced in TNFR1-KO but were reduced in TNFR2-KO mice. Furthermore, our results suggest that vascular proliferation, but not infiltration of macrophages and lymphocytes, accounted for the phenotypic differences between the TNFR1-KO and TNFR2-KO mice. In wild-type animals TNFR2 protein in vascular endothelium was highly up-regulated in response to ischemia, leading to increased TNFR2-specific signaling as determined by the formation TNFR2-TRAF2 complex and activation of TNFR2-specific kinase Bmx/Etk. In isolated murine ECs, activation of TNFR2 induced nuclear factor-kappaB-dependent reporter gene expression, EC survival, and migration. In contrast, activation of TNFR1 caused inhibition of EC migration and EC apoptosis. These data demonstrate that TNFR1 and TNFR2 play differential roles in ischemia-mediated arteriogenesis and angiogenesis, partly because of their opposite effects on EC survival and migration.
Publication
Journal: Cancer Discovery
November/20/2012
Abstract
Recent proteomic data have uncovered an interdependence of PI3K and STAT3. In PI3K-tranformed murine cells, STAT3 is phosphorylated on Y705 and activated in a PI3K-dependent manner. Dominant negative STAT3 interferes with PI3K-induced oncogenic transformation. Phosphorylation of STAT3 in PI3K-transformed murine cells is mediated by the TEC kinase BMX. Observations on glioblastoma stem cells reveal similar critical roles for STAT3 and BMX. The new data document an important role of STAT3 in PI3K-driven oncogenic transformation and mark BMX as a promising therapeutic target that could enhance the effectiveness of PI3K inhibitors.
CONCLUSIONS
The PI3K–TOR and STAT3 signaling pathways represent two distinct regulatory networks. The discovery of a functional link between these pathways is significant for our understanding of PI3K- and STAT3-driven oncogenic mechanisms and identifies the TEC kinase BMX as a new cancer target.
Publication
Journal: Oncogene
December/19/1994
Abstract
The Bmx sequence was identified and cloned during our search for novel tyrosine kinase genes expressed in human bone marrow cells. Bmx cDNA comprises a long open reading frame of 675 amino acids, containing one SH3, one SH2 and one tyrosine kinase domain, which are about 70% identical with Btk, Itk and Tec and somewhat less with Txk tyrosine kinase sequences. The amino terminal sequences of these four tyrosine kinases are about 40% identical and each contains a so-called pleckstrin homology domain. The 2.7 kb Bmx mRNA was expressed in endothelial cells and several human tissues by Northern blotting and an 80 kD Bmx polypeptide was detected in human endothelial cells. Immunoprecipitates of COS cells transfected with a Bmx expression vector and NIH3T3 cells expressing a Bmx retrovirus contained a tyrosyl phosphorylated Bmx polypeptide of similar molecular weight. The BMX gene was located in chromosomal band Xp22.2 between the DXS197 and DXS207 loci. Interestingly, chromosome X also contains the closest relative of BMX, the BTK gene, implicated in X-linked agammaglobulinemia. The BMX gene thus encodes a novel nonreceptor tyrosine kinase, which may play a role in the growth and differentiation of hematopoietic cells.
Publication
Journal: Journal of Biological Chemistry
January/29/2004
Abstract
Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.
Publication
Journal: Immunological Reviews
April/15/2009
Abstract
The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-gamma (PLC-gamma), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.
Publication
Journal: Nature Cell Biology
July/11/2001
Abstract
Etk/BMX, a member of the Btk family of tyrosine kinases, is highly expressed in cells with great migratory potential, including endothelial cells and metastatic carcinoma cell lines. Here, we present evidence that Etk is involved in integrin signalling and promotes cell migration. The activation of Etk by extracellular matrix proteins is regulated by FAK through an interaction between the PH domain of Etk and the FERM domain of FAK. The lack of Etk activation by extracellular matrix in FAK-null cells could be restored by co-transfection with wild-type FAK. Disrupting the interaction between Etk and FAK diminished the cell migration promoted by either kinase. Furthermore, inhibiting Etk expression in metastatic carcinoma cell lines with an antisense oligonucleotide blocks integrin-mediated migration of these cells. Taken together, our data indicate the essential role of the interaction of the PH domain of Etk and the FERM domain of FAK in integrin signalling.
Authors
Publication
Journal: Molecular and Cellular Biology
November/21/2002
Abstract
Tumor necrosis factor (TNF) is a cytokine that mediates many pathophysiologial processes, including angiogenesis. However, the molecular signaling involved in TNF-induced angiogenesis has not been determined. In this study, we examined the role of Etk/Bmx, an endothelial/epithelial tyrosine kinase involved in cell adhesion, migration, and survival in TNF-induced angiogenesis. We show that TNF activates Etk specifically through TNF receptor type 2 (TNFR2) as demonstrated by studies using a specific agonist to TNFR2 and TNFR2-deficient cells. Etk forms a preexisting complex with TNFR2 in a ligand-independent manner, and the association is through multiple domains (pleckstrin homology domain, TEC homology domain, and SH2 domain) of Etk and the C-terminal domain of TNFR2. The C-terminal 16-amino-acid residues of TNFR2 are critical for Etk association and activation, and this Etk-binding and activating motif in TNFR2 is not overlapped with the TNFR-associated factor type 2 (TRAF2)-binding sequence. Thus, TRAF2 is not involved in TNF-induced Etk activation, suggesting a novel mechanism for Etk activation by cytokine receptors. Moreover, a constitutively active form of Etk enhanced, whereas a dominant-negative Etk blocked, TNF-induced endothelial cell migration and tube formation. While most TNF actions have been attributed to TNFR1, our studies demonstrate that Etk is a TNFR2-specific kinase involved in TNF-induced angiogenic events.
Publication
Journal: Journal of Biological Chemistry
September/12/2001
Abstract
Etk/Bmx, a member of the Tec family of nonreceptor protein-tyrosine kinases, is characterized by an N-terminal pleckstrin homology domain and has been shown to be a downstream effector of phosphatidylinositol 3-kinase. P21-activated kinase 1 (Pak1), another well characterized effector of phosphatidylinositol 3-kinase, has been implicated in the progression of breast cancer cells. In this study, we characterized the role of Etk in mammary development and tumorigenesis and explored the functional interactions between Etk and Pak1. We report that Etk expression is developmentally regulated in the mammary gland. Using transient transfection, coimmunoprecipitation and glutathione S-transferase-pull down assays, we showed that Etk directly associates with Pak1 via its N-terminal pleckstrin homology domain and also phosphorylates Pak1 on tyrosine residues. The expression of wild-type Etk in a non-invasive human breast cancer MCF-7 cells significantly increased proliferation and anchorage-independent growth of epithelial cancer cells. Conversely, expression of kinase-inactive mutant Etk-KQ suppressed the proliferation, anchorage-independent growth, and tumorigenicity of human breast cancer MDA-MB435 cells. These results indicate that Pak1 is a target of Etk and that Etk controls the proliferation as well as the anchorage-independent and tumorigenic growth of mammary epithelial cancer cells.
Publication
Journal: Molecular and Cellular Biology
March/22/2000
Abstract
Etk (also called Bmx) is a member of the Btk tyrosine kinase family and is expressed in a variety of hematopoietic, epithelial, and endothelial cells. We have explored biological functions, regulators, and effectors of Etk. Coexpression of v-Src and Etk led to a transphosphorylation on tyrosine 566 of Etk and subsequent autophosphorylation. These events correlated with a substantial increase in the kinase activity of Etk. STAT3, which was previously shown to be activated by Etk, associated with Etk in vivo. To investigate whether Etk could mediate v-Src-induced activation of STAT3 and cell transformation, we overexpressed a dominant-negative mutant of Etk in an immortalized, untransformed rat liver epithelial cell line, WB, which contains endogenous Etk. Dominant-negative inactivation of Etk not only blocked v-Src-induced tyrosine phosphorylation and activation of STAT3 but also caused a great reduction in the transforming activity of v-Src. In NIH3T3 cells, although Etk did not itself induce transformation, it effectively enhanced the transforming ability of a partially active c-Src mutant (c-Src378G). Furthermore, Etk activated STAT3-mediated gene expression in synergy with this Src mutant. Our findings thus indicate that Etk is a critical mediator of Src-induced cell transformation and STAT3 activation. The role of STAT3 in Etk-mediated transformation was also examined. Expression of Etk in a human hepatoma cell line Hep3B resulted in a significant increase in its transforming ability, and this effect was abrogated by dominant-negative inhibition of STAT3. These data strongly suggest that Etk links Src to STAT3 activation. Furthermore, Src-Etk-STAT3 is an important pathway in cellular transformation.
Publication
Journal: Oncogene
February/6/2006
Abstract
Protein kinase Pim-1 has been implicated in the development of hematopoietic and prostatic malignancies. Here, we present the evidence that two isoforms, the 44 and 33 kDa Pim-1, are expressed in all human prostate cancer cell lines examined. The subcellular localization of human 44 kDa Pim-1 is primarily on the plasma membrane, while the 33 kDa isoform is present in both the cytosol and nucleus in PCA cells. The 44 kDa Pim-1 contains the proline-rich motif at the N-terminus and directly binds to the SH3 domain of tyrosine kinase Etk. Such interaction leads to the activation of Etk kinase activity possibly by competing with the tumor suppressor p53. This is corroborated by the fact that overexpression of the 44 kDa Pim-1 in prostate cancer cells confers the resistance to chemotherapeutic drugs. Our results suggest that these two isoforms of Pim-1 kinase may regulate distinct substrates and the 44 kDa Pim-1 may play a more prominent role in drug resistance in prostate cancer cells.
Publication
Journal: Journal of Clinical Investigation
October/29/2006
Abstract
Bmx/Etk non-receptor tyrosine protein kinase has been implicated in endothelial cell migration and tube formation in vitro. However, the role of Bmx in vivo is not known. Bmx is highly induced in the vasculature of ischemic hind limbs. We used both mice with a genetic deletion of Bmx (Bmx-KO mice) and transgenic mice expressing a constitutively active form of Bmx under the endothelial Tie-2 enhancer/promoter (Bmx-SK-Tg mice) to study the role of Bmx in ischemia-mediated arteriogenesis/angiogenesis. In response to ischemia, Bmx-KO mice had markedly reduced, whereas Bmx-SK-Tg mice had enhanced, clinical recovery, limb perfusion, and ischemic reserve capacity when compared with nontransgenic control mice. The functional outcomes in these mice were correlated with ischemia-initiated arteriogenesis, capillary formation, and vessel maturation as well as Bmx-dependent expression/activation of TNF receptor 2- and VEGFR2-mediated (TNFR2/VEGFR2-mediated) angiogenic signaling in both hind limb and bone marrow. More importantly, results of bone marrow transplantation studies showed that Bmx in bone marrow-derived cells plays a critical role in the early phase of ischemic tissue remodeling. Our study provides the first demonstration to our knowledge that Bmx in endothelium and bone marrow plays a critical role in arteriogenesis/angiogenesis in vivo and suggests that Bmx may be a novel target for the treatment of vascular diseases such as coronary artery disease and peripheral arterial disease.
Publication
Journal: Circulation
November/15/2010
Abstract
BACKGROUND
Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood.
RESULTS
Unlike placenta growth factor, which binds to the same receptors, adeno-associated viral delivery of VEGF-B to mouse skeletal or heart muscle induced very little angiogenesis, vascular permeability, or inflammation. As previously reported for the VEGF-B(167) isoform, transgenic mice and rats expressing both isoforms of VEGF-B in the myocardium developed cardiac hypertrophy yet maintained systolic function. Deletion of the VEGF receptor-1 tyrosine kinase domain or the arterial endothelial Bmx tyrosine kinase inhibited hypertrophy, whereas loss of VEGF-B interaction with neuropilin-1 had no effect. Surprisingly, in rats, the heart-specific VEGF-B transgene induced impressive growth of the epicardial coronary vessels and their branches, with large arteries also seen deep inside the subendocardial myocardium. However, VEGF-B, unlike other VEGF family members, did not induce significant capillary angiogenesis, increased permeability, or inflammatory cell recruitment.
CONCLUSIONS
VEGF-B appears to be a coronary growth factor in rats but not in mice. The signals for the VEGF-B-induced cardiac hypertrophy are mediated at least in part via the endothelium. Because cardiomyocyte damage in myocardial ischemia begins in the subendocardial myocardium, the VEGF-B-induced increased arterial supply to this area could have therapeutic potential in ischemic heart disease.
Publication
Journal: Molecular and Cellular Biology
April/12/2004
Abstract
The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. Btk is essential for B-cell receptor signaling, because mutations in Btk are responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice, whereas Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, but its role in antigen receptor signaling is not clear. In this study, we show that Tec protein is expressed at substantially lower levels in primary T and B cells relative to Itk and Btk, respectively. However, Tec is up-regulated upon T-cell activation and in Th1 and Th2 cells. In functional experiments that mimic Tec up-regulation, we find that Tec overexpression in lymphocyte cell lines is sufficient to induce phospholipase Cgamma (PLC-gamma) phosphorylation and NFAT (nuclear factor of activated T cells) activation. In contrast, overexpression of Btk, Itk, or Bmx does not induce NFAT activation. Tec-induced NFAT activation requires PLC-gamma, but not the adapters LAT, SLP-76, and BLNK, which are required for Btk and Itk to couple to PLC-gamma. Finally, we show that the unique effector function for Tec correlates with a unique subcellular localization. We hypothesize that Tec functions in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors.
Publication
Journal: Cytokine and Growth Factor Reviews
February/23/2000
Abstract
The Tec family is a recently emerging subfamily of non-receptor protein-tyrosine kinases (PTKs) represented by its first member, Tec. This family is composed of five members, namely Tec, Btk. Itk/Emt/Tsk, Bmx and Txk/Rlk. The most characteristic feature of this family is the presence of a pleckstrin homology (PH) domain in their protein structure. The PH domain is known to bind phosphoinositides; on this basis, Tec family PTKs may act as merge points of phosphotyrosine-mediated and phospholipid-mediated signaling systems. Many Tec family proteins are abundantly expressed in hematopoietic tissues, and are presumed to play important roles in the growth and differentiation processes of blood cells. Supporting this, mutations in the Btk gene cause X chromosome-linked agammaglobulinemia (XLA) in humans and X chromosome-linked immunodeficiency (Xid) in mice, indicating that Btk activity is indispensable for B-cell ontogeny. In addition, Tec family kinases have been shown to be involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein-coupled receptors and integrin molecules. Efforts are being made to identify molecules which interact with Tec kinases to transfer Tec-mediated signals in vivo. Candidates for such second messengers include PLC-gamma2, guanine nucleotide exchange factors for RhoA and TFII-I/BAP-135. This review summarizes current knowledge concerning the input and output factors affecting the Tec kinases.
Authors
Publication
Journal: Hypertension
April/13/2011
Abstract
We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; P<0.01) in BMX compared with CON. In contrast, the proportion of AT(2) sites was only one third that of controls (BMX, 25 ± 11% vs CON, 78 ± 4%; P<0.01), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16 ± 3% vs 6 ± 4%; P<0.05); however, NO production to Ang II was attenuated in BMX (26 ± 7% vs 82 ± 14%; P<0.05). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75 ± 8% vs 131 ± 26%; P<0.05). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming.
Publication
Journal: Journal of Clinical Microbiology
July/24/2014
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been described as a fast and inexpensive method for the identification of mycobacteria. Although mycobacteria require extraction prior to MALDI-TOF MS analysis, previously published protocols have been relatively complex, involving significant hands-on time and materials not often found in the clinical laboratory. In this study, we tested two simplified protein extraction protocols developed at the University of Washington (UW) and by bioMérieux (BMX) for use with two different mass spectrometry platforms (the Bruker MALDI Biotyper and the bioMérieux Vitek MS, respectively). Both extraction protocols included vortexing with silica beads in the presence of ethanol. The commercial Bruker database was also augmented with an in-house database composed of 123 clinical Mycobacterium strains. A total of 198 clinical strains, representing 18 Mycobacterium species, were correctly identified to the species level 94.9% of the time when extracted using the UW protocol and compared to the augmented database. The BMX protocol and Vitek MS system resulted in correct species-level identifications for 94.4% of these strains. In contrast, only 79.3% of the strains were identified to the species level by the nonaugmented Bruker database, although the use of a lower identification score threshold (≥1.7) increased the identification rate to 93.9%, with two misidentifications that were unlikely to be clinically relevant. The two simplified protein extraction protocols described in this study are easy to use for identifying commonly encountered Mycobacterium species.
load more...