Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(264)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Chinese Journal of Integrative Medicine
February/17/2020
Abstract
Since December 2019, an outbreak of corona virus disease 2019 (COVID-19) occurred in Wuhan, and rapidly spread to almost all parts of China. This was followed by prevention programs recommending Chinese medicine (CM) for the prevention. In order to provide evidence for CM recommendations, we reviewed ancient classics and human studies.Historical records on prevention and treatment of infections in CM classics, clinical evidence of CM on the prevention of severe acute respiratory syndrome (SARS) and H1N1 influenza, and CM prevention programs issued by health authorities in China since the COVID-19 outbreak were retrieved from different databases and websites till 12 February, 2020. Research evidence included data from clinical trials, cohort or other population studies using CM for preventing contagious respiratory virus diseases.The use of CM to prevent epidemics of infectious diseases was traced back to ancient Chinese practice cited in Huangdi's Internal Classic (Huang Di Nei Jing) where preventive effects were recorded. There were 3 studies using CM for prevention of SARS and 4 studies for H1N1 influenza. None of the participants who took CM contracted SARS in the 3 studies. The infection rate of H1N1 influenza in the CM group was significantly lower than the non-CM group (relative risk 0.36, 95% confidence interval 0.24-0.52; n=4). For prevention of COVID-19, 23 provinces in China issued CM programs. The main principles of CM use were to tonify qi to protect from external pathogens, disperse wind and discharge heat, and resolve dampness. The most frequently used herbs included Radix astragali (Huangqi), Radix glycyrrhizae (Gancao), Radix saposhnikoviae (Fangfeng), Rhizoma Atractylodis Macrocephalae (Baizhu), Lonicerae Japonicae Flos (Jinyinhua), and Fructus forsythia (Lianqiao).Based on historical records and human evidence of SARS and H1N1 influenza prevention, Chinese herbal formula could be an alternative approach for prevention of COVID-19 in high-risk population. Prospective, rigorous population studies are warranted to confirm the potential preventive effect of CM.
Publication
Journal: Journal of Pharmaceutical and Biomedical Analysis
August/31/2009
Abstract
Danggui-Shaoyao-San (DSS), a famous traditional Chinese medicine formula consisting of six herbal medicines (Paeonia lactiflora, Angelica sinensis, Ligusticum chuanxiong, Poria cocos, Atractylodis macrocephalae and Rhizoma Alismatis), has been used as a classical gynecological remedy in China for centuries. However, its active substances have remained unknown. In this paper, an HPLC/DAD/ESI-MS/MS method was developed for the qualitative and quantitative analysis of the major constituents in DSS. The ESI-MS/MS fragmentation behavior of the reference compounds was proposed for aiding the structural identification of components in DSS extract. Forty-one compounds including monoterpene glycosides, phenolic acids, phathalides, sesquiterpenoids and triterpenes were identified or tentatively characterized by comparing their retention times, UV and MS spectra with those of authentic compounds or literature data, and 14 of them (gallic acid, albiflorin, paeoniflorin, ferulic acid, benzoic acid, senkyunolide I, coniferyl ferulate, senkyunolide A, 3-butylphthalide, Z-ligustilide, Z-butylidenephthalide, atractylcnolide II, atractylcnolide I and levistolide A) were determined by HPLC-DAD using a C18 column and gradient elution of acetonitrile/water-formic acid (100:0.1, v/v). The linearity, precision, accuracy, LOD and LOQ were validated for the quantification method, which proved sensitive, accurate and reproducible. The study might provide a basis for the quality control of DSS extracts and preparations.
Publication
Journal: Journal of Ethnopharmacology
June/30/2010
Abstract
BACKGROUND
Xiaoyaosan, a famous Chinese prescription, composed of Poria (Poria cocos (Schw.) Wolf), Radix Paeoniae Alba (Paeonia lactiflora Pall.), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Radix Bupleuri (Bupleurum chinense DC.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Rhizoma Atractylodis Macrocephalae (Atractylodes macrocephala Koidz.), Herba Menthae (Mentha haplocalyx Briq.), and Rhizoma Zingiberis Recens (Zingiber officinale Rosc.), has been widely used in the clinic for treating mental disorders. Behavior and biochemical analyses indicate xiaoyaosan has obvious anti-depression activity. However, there is no report on the effects of xiaoyaosan using a metabolomics approach.
OBJECTIVE
A urinary metabolomics method was applied to evaluate the efficacy of xiaoyaosan on rat model of chronic unpredictable mild stress.
METHODS
Rats were divided into 6 groups and drugs were administered during the 21-day model building period. Urine was measured using GC-MS, processed with XCMS and Microsoft Excel and analyzed by SIMCA-P and SPASS software. Variable importance in projection statistics and loading plot were used to find biomarker ions.
RESULTS
Clear separation between model and each drug group was achieved. High dose group of xiaoyaosan was much closer to control group than middle dose group and amitriptyline group. The time-dependent recovery tendency in high dose group was obtained.
CONCLUSIONS
In term of anti-depression effect, high dose xiaoyaosan was the most effective and amitriptyline equaled middle dose xiaoyaosan as shown by metabolomics strategy and behavior tests. Some common and characteristic metabolites on the anti-depression of xiaoyaosan and amitriptyline were obtained. The work showed metabolomics is a valuable tool in studying the efficacy and potential biomarkers of therapeutic effect of complex prescriptions.
Publication
Journal: Journal of Ethnopharmacology
December/26/2011
Abstract
BACKGROUND
Xiaoyaosan (XYS), a famous Chinese prescription, composed of Radix Bupleuri (Bupleurum chinense DC.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix Paeoniae Alba (Paeonia lactiflora Pall.), Rhizoma Atractylodis Macrocephalae (Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.) Wolf), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Herba Menthae (Mentha haplocalyx Briq.), and Rhizoma Zingiberis Recens (Zingiber officinale Rosc.), has been widely used in the clinic for treating mental disorders. Behavior and biochemical analyses indicate XYS has obvious anti-depression activity. However, there is no report on the effects of XYS using a metabolomics approach.
OBJECTIVE
Depression is a prevalent complex psychiatric disorder and its pathophysiological mechanism is not yet well understood. This paper was designed to study metabonomic characters of the depression induced by chronic unpredictable mild stress (CUMS) and the therapeutic effects of XYS, classic traditional Chinese medicine (TCM) in treating the depression.
METHODS
A plasma metabonomics method based on gas chromatography/mass spectrometry (GC/MS) was developed. Principal component analysis (PCA) was utilized to classify and reveal the differences between the model group and control group. In turns, the concentration of these differences was analyzed with t-test to determine whether XYS was possible to influence the metabolic pattern induced by CUMS.
RESULTS
The significant difference in metabolic profiling was observed from model group compared with drug-dose group by using the PCA, indicating the recovery effect of XYS on CUMS rats. Some significantly changed metabolites like glycine, glucose and hexadecanoic acid have been identified. These biochemical changes are related to the disturbance in amino acid metabolism, energy metabolism and glycometabolism, which are helpful to further understand the CUMS and the therapeutic mechanism of XYS.
CONCLUSIONS
Metabonomic approach is helpful to further understanding the pathophysiology of depression and assisting in clinical diagnosis of depression and is also a valuable tool for studying the essence of Chinese medicine's syndrome theory and therapeutic effect mechanism of TCM.
Publication
Journal: PLoS ONE
July/21/2014
Abstract
Yu Ping Feng San (YPFS), a Chinese herbal decoction, is composed of Astragali Radix (AR; Huangqi), Atractylodis Macrocephalae Rhizoma (AMR; Baizhu) and Saposhnikoviae Radix (SR; Fangfeng) in a weight ratio of 1∶2∶1. Clinically, YPFS has been widely used to regulate immune functions; however, the action mechanism of it is not known. Here, we addressed this issue by providing detail analyses of chemical and biological properties of YPFS. By using rapid resolution liquid chromatography coupled with mass spectrometry, fifteen chemicals deriving from different herbs of YPFS were determined, and which served as a control for the standardization of the herbal extract of YPFS. In general, the amounts of chosen chemical markers were higher in a preparation of YPFS as compared to that of single herb or two-herb compositions. In order to reveal the immune functions of YPFS, the standardized extract was applied onto cultured murine macrophages. The treatment of YPFS stimulated the mRNA and protein expressions of pro-inflammatory cytokines via activation of NF-κB by enhancing IκBα degradation. In contrast, the application of YPFS suppressed the expressions of pro-inflammatory cytokines significantly in the lipopolysaccharide (LPS)-induced chronic inflammation model. In addition, YPFS could up regulate the phagocytic activity in cultured macrophages. These results therefore supported the bi-directional immune-modulatory roles of YPFS in regulating the releases of cytokines from macrophages.
Publication
Journal: Journal of Experimental and Clinical Cancer Research
October/12/2016
Abstract
BACKGROUND
Atractylenolide I (ATR-1), an active component of Rhizoma Atractylodis Macrocephalae, possesses cytotoxicity against various carcinomas. However, little is known about the effects of ATR-1on bladder cancer. In the present study, the anti-tumor activity of ATR-1 was examined on bladder cancer cells both in vivo and in vitro.
METHODS
MTT assay was used to assess the cytotoxic effect of ATR-1. Cell cycle distribution and apoptosis levels were evaluated using flow cytometry. Western blotting assay was applied to measure the levels of proteins associated with the apoptotic pathway, cell cycle progression and PI3K/Akt/mTOR signaling pathway. Tumor models in nude mice were induced by injection of T-24 and 253J human bladder cancer cells.
RESULTS
ATR-1 inhibited bladder cancer cell proliferation, arrested cell cycle in G2/M phase through up-regulation of p21 and down-regulation of cyclin B1, CDK1 and Cdc25c. Meanwhile, ATR-1 also triggered cellular apoptosis depending on the activation of mitochondrial apoptotic pathway. Mechanism investigation indicated that ATR-1 exerts its anti-tumor effect also relies on the inhibition of PI3K/Akt/mTOR signaling pathway. Finally, mice studies showed that ATR-1 blocked the T-24 or 253J-induced xenograft tumor growth without noticeable toxicity.
CONCLUSIONS
ATR-1 may be served as a potential therapeutic agent for the treatment of bladder cancer.
Publication
Journal: Evidence-based Complementary and Alternative Medicine
July/3/2013
Abstract
Lipopolysaccharide (LPS), a potent inducer of systemic inflammatory responses, is known to cause impairment of intestinal barrier function. Here, we evaluated the in vitro protective effect of an unfermented formulation of Rhizoma Atractylodis Macrocephalae (RAM), a traditional Chinese herbal medicine widely used in the treatment of many digestive and gastrointestinal disorders, and two fermented preparations of RAM, designated as FRAM-1 (prepared in Luria-Bertani broth) and FRAM-2 (prepared in glucose), on intestinal epithelial cells (IECs) against LPS insult. In general, fermented formulations, especially FRAM-2, but not unfermented RAM, exerted an appreciable protective effect on IECs against LPS-induced perturbation of membrane resistance and permeability. Both fermented formulations exhibited appreciable anti-inflammatory activities in terms of their ability to inhibit LPS-induced gene expression and induced production of a number of key inflammatory mediators and cytokines in RAW 264.7 macrophage cells. However, in most cases, FRAM-2 exhibited stronger anti-inflammatory effects than FRAM-1. Our findings also suggest that suppression of nuclear factor- κ β (NF- κ β ) activity might be one of the possible mechanisms by which the fermented RAM exerts its anti-inflammatory effects. Collectively, our results highlight the benefits of using fermented products of RAM to protect against LPS-induced inflammatory insult and impairment in intestinal barrier function.
Publication
Journal: Journal of Ethnopharmacology
December/26/2011
Abstract
OBJECTIVE
Sinomenine, an alkaloid isolated from the root of Sinomenium acutum, has been used to alleviate the symptoms of rheumatic diseases. Liang Miao San (LMS), composed of the herbs Rhizoma Atractylodis (Cangzhu) and Cotex Phellodendri (Huangbai), is another traditional Chinese medicine formula for rheumatoid arthritis (RA) treatment. Although numerous studies have demonstrated the potential anti-inflammatory activities of sinomenine and LMS, the underlying intracellular mechanisms regulating the anti-inflammatory activities of sinomenine and LMS on human primary fibroblast-like synoviocytes (FLS) from RA patients and normal control subjects have not been elucidated.
METHODS
We investigated the in vitro anti-inflammatory activity of sinomenine and LMS on inflammatory cytokine tumor necrosis factor (TNF)-α-mediated activation of human normal and RA-FLS. The underlying intracellular signaling molecules were analyzed quantitatively using flow cytometry.
RESULTS
Sinomenine was found to significantly inhibit TNF-α induced cell surface expression of vascular cell adhesion molecule (VCAM)-1 and release of inflammatory cytokine and chemokine IL-6, CCL2 and CXCL8 from both normal and RA-FLS (all p<0.05). Moreover, the suppression of sinomenine on TNF-α induced VCAM-1 expression and IL-6 release of RA-FLS was significantly higher than that of normal FLS (p<0.05). LMS significantly inhibited TNF-α-induced inflammatory chemokines CXCL10 and CCL5 release from both normal and RA-FLS, with significantly higher suppression on CXCL10 secretion in RA-FLS than that of normal FLS (all p<0.05). Further investigations showed that sinomenine and LMS could significantly suppress TNF-α-induced phosphorylation of inhibitor κBα and extracellular signal-regulated protein kinase, the central signaling molecules mediating TNF-α-induced VCAM-1 expression and chemokine production.
CONCLUSIONS
Our results therefore provide a new insight into the differential anti-inflammatory activities of sinomenine and LMS through the suppression of TNF-α-activated FLS by modulating distinct intracellular signaling pathways in RA.
Publication
Journal: Molecules
January/2/2017
Abstract
Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.
Publication
Journal: Journal of Ethnopharmacology
February/28/2016
Abstract
BACKGROUND
Wuling San, a famous prescription in Chinese medicine, is composed of Polyporus, Poria, Alismatis rhizoma, Cinnamomi cortex and Atractylodis macrocephalae rhizoma, and promotes kidney function and diuresis. The main purpose of this study was to investigate its renal protective effect in high fructose-induced hyperuricemic mice.
METHODS
ICR mice were fed with 30% fructose in drinking water for 6 weeks to induce hyperuricemia and renal dysfunction. Then mice were orally administrated for other 6 weeks with Wuling San (987, 1316, 1755 and 2340mg/kg), allopurinol (5mg/kg) and water daily, respectively. Serum and urine levels of uric acid, creatinine and blood urea nitrogen (BUN) were measured. Hematoxylin and eosin staining was used to assess renal histological changes. Renal interleukin (IL)-1β concentrations were measured using ELISA kit. Renal protein levels of organic ion transporters, as well as toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling and pyrin domain containing 3 (NLRP3) inflammasome were determined by Western blot assay.
RESULTS
Wuling San significantly decreased serum uric acid, creatinine and BUN levels, increased fractional excretion of uric acid (FEUA) in fructose-fed mice. It restored fructose-induced dysregulation of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2) and organic anion transporter 1 (OAT1), as well as organic cation transporter 1 (OCT1) and OCT2 in mice. Wuling San obviously alleviated infiltration of inflammation cells in kidney glomerulus of fructose-fed mice. Moreover, Wuling San suppressed the activation of TLR4/ MyD88 signaling to inhibit nuclear factor κB (NF-κB) signaling and mitogen-activated protein kinases (MAPKs) activation in fructose-fed mice. Additionally, Wuling San decreased NLRP3 inflammasome activation and IL-1β secretion in the kidney of fructose-fed mice.
CONCLUSIONS
Wuling San exerts renal protective effect by modulating renal organic ion transporters in fructose-induced hyperuricemic mice. The molecular mechanism of its action may be associated with the suppression of TLR4/MyD88 signaling and NLRP3 inflammasome activation to reduce IL-1β production in high fructose-induced hyperuricemic mice.
Publication
Journal: Journal of Ethnopharmacology
January/26/2009
Abstract
BACKGROUND
PentaHerbs formula (PHF) containing Cortex Moutan, root bark of Paeonia suffruticosa Andr. (Ranunculaceae), Cortex Phellodendri, bark of Phellodendron chinensis Schneid. (Rutaceae), Flos Lonicerae, flower of Lonicera japonica Thunb. (Capri-foliaceae), Herba Menthae, aerial part of Mentha haplocalyx Briq. (Labiatae) and Rhizoma Atractylodis, rhizome of Atractylodes lancea (Thunb.) DC. (Compositae) at the ratio of 2:2:2:1:2 was useful in the management of eczema.
OBJECTIVE
Since the mechanism of action of PHF is not known, we aimed to investigate the actions of PHF on mast cell activation.
METHODS
Effects of aqueous extracts of PHF and individual component herb on mediator release from rat peritoneal mast cells (RPMCs) and cytokine production from HMC-1 were investigated.
RESULTS
PHF, Cortex Moutan and Herba Menthae significantly attenuated histamine release and prostaglandin D(2) synthesis from RPMC activated by anti-IgE and compound 48/80 (p<0.05). While Flos Lonicerae and Rhizoma Atractylodis suppressed only mediator release from compound 48/80 activated RPMC, Cortex Phellodendri potentiated only anti-IgE induced mediator release (p<0.05). However, with the exception of Cortex Moutan, PHF and the other four component herbs failed to affect cytokine production in HMC-1.
CONCLUSIONS
Although individual herbs demonstrated different modulating effects on mast cells, inhibition of inflammatory mediator release from mast cells would contribute to the therapeutic efficacy of PHF.
Publication
Journal: Journal of Ethnopharmacology
April/11/2007
Abstract
CML-1 is a purified extract from a mixture of 13 oriental herbs (Achyranthis Radix, Angelicae Gigantis Radix, Cinnamomi Cortex Spissus, Eucommiae Cortex, Glycyrrhizae Radix, Hoelen, Lycii Fructus, Paeoniae Radix, Rehmanniae Radix Preparata and Atractylodis Rhizoma, Zingiberis Rhizoma, Zizyphi Semen, Acori Graminei Rhizoma) that have been widely used for the treatment of inflammatory diseases in Asia. Since our previous study has been shown to have the anti-inflammatory activity of CML-1 in vivo and the upregulation of adhesion molecules in response to numerous inducing factors is associated with inflammation, this study examined the effect of CML-1 on the expression of adhesion molecules induced by TNF-alpha in cultured human umbilical vein endothelial cells (HUVECs). Preincubation of HUVECs for 20h with CML-1 (1-100mug/ml) dose-dependently inhibited TNF-alpha (10ng/ml)-induced adhesion of THP-1 monocytic cells, as well as mRNA and protein expression of E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). CML-1 was also shown to inhibit NK-kB activation induced by TNF-alpha. Furthermore, CML-1 inhibited TNF-alpha-induced IkB kinase activation, subsequent degradation of IkBalpha, and nuclear translocation of NK-kB. Evidence presented in this report demonstrated that CML-1 inhibited the adhesive capacity of HUVEC and the TNF-alpha-mediated induction of E-selectin, ICAM-1 and VCAM-1 in HUVEC by inhibiting the IkB/NF-kB signaling pathway at the level of IkB kinase, which may explain the ability of CML-1 to suppress inflammation and modulate the immune response.
Publication
Journal: Molecular Medicine Reports
April/16/2017
Abstract
Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti‑inflammatory and anti‑allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South‑East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo. Among them, atractylon showed most significant antiviral activities. Atractylon treatment at doses of 10‑40 mg/kg for 5 days attenuated influenza A virus (IAV)‑induced pulmonary injury and decreased the serum levels of interleukin (IL)‑6, tumor necrosis factor‑α and IL‑1β, but increased interferon‑β (IFN‑β) levels. Atractylon treatment upregulated the expression of Τoll‑like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor‑associated factor 6 and IFN‑β mRNA but downregulated nuclear factor‑κB p65 protein expression in the lung tissues of IAV‑infected mice. These results demonstrated that atractylon significantly alleviated IAV‑induced lung injury via regulating the TLR7 signaling pathway, and may warrant further evaluation as a possible agent for IAV treatment.
Publication
Journal: Journal of Ethnopharmacology
December/26/2011
Abstract
BACKGROUND
Xiaoyaosan (XYS), composed of Radix Bupleuri, Radix Angelicae Sinensis, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Poria, Herba Menthae, Rhizoma Zingiberis Recens and Radix Glycyrrhizae, is a valuable traditional Chinese medicine (TCM) which is used for the treatment of depression in China. In the formula, Radix Bupleuri usually serves as the principal drug, Radix Angelicae Sinensis and Radix Paeoniae Alba serve as the ministerial drugs, Rhizoma Atractylodis Macrocephalae, Poria, Herba Menthae and Rhizoma Zingiberis Recens serve as adjunctive drugs, Radix Glycyrrhizae serves as messenger drug, they coordinate with each other and enhance the effect of the formula. In our previous experiments, the antidepressant effect of XYS was revealed. However, the antidepressant part (or component) of this prescription was still obscure. We divided the XYS into five different polar fractions, and explored the antidepressant activity of five different polar fractions to identify the active fraction.
METHODS
Behavior research and metabonomics method based on (1)H NMR were used for efficacy study of different fractions in chronic unpredictable mild stress (CUMS) model of depression. Rats were divided into 8 groups and drugs were administered during the 21 days model building period. The urine samples of rats were collected overnight (12h) on 21 day and the metabolic profiling of the urine was measured using NMR. Multivariate analysis was also utilized to evaluate the active fraction of XYS.
RESULTS
In the behavior research, there were significant difference between the lipophilic fraction group (XY-A) and the model group. In addition, with pattern recognition analysis of urinary metabolites, the results showed a clear separation of the model group and control group, while XY-A group was much closer to the control group in the OSC-PLS score plot. Seven endogenous metabolites contributing to the separation of the model group and control group were detected, while XY-A group regulated the 5 perturbed metabolites showing a tendency of recovering to control group.
CONCLUSIONS
The present work suggested that petroleum ether fraction was the most effective fraction, implying that lipophilic components contribute to the antidepressant effect of XYS.
Publication
Journal: Journal of Natural Medicines
October/28/2010
Abstract
(1)H-NMR spectroscopy was successfully applied to the quantitative determination of atractylon in Atractylodis Rhizoma (dried rhizomes of Atractylodes ovata and A. japonica) and Atractylodis Lanceae Rhizoma (dried rhizomes of Atractylodes lancea and A. chinensis). The analysis was carried out by comparing the integral of the H-12 singlet signal of atractylon, which was well separated in the range of delta 6.95-7.05 ppm in the NMR spectrum, with the integral of a hexamethyldisilane (HMD) signal at delta 0 ppm. The atractylon contents obtained by the (1)H-NMR spectroscopy were consistent with those obtained by the conventional HPLC analysis. The present method requires neither reference compounds for calibration curves nor sample pre-purification. It also allows simultaneous determination of multiple constituents in a crude extract. Thus, it is applicable to chemical evaluation of crude drugs as a powerful alternative to various chromatographic methods.
Publication
Journal: Biological and Pharmaceutical Bulletin
September/26/2001
Abstract
A traditional Chinese herbal medicine, Qizhu Tang (QZT) was studied for its in vitro antioxidant activity and the effect on cerebral oxidative damage after forebrain ischemia followed by reperfusion in rats. The QZT decoction was shown to have strong hydroxyl radical (*OH) scavenging activity (approx. 0.1 mM as Trolox equivalent) when determined by ESR using DMPO as a spin trap reagent and H2O2/UV as the *OH source. When the QZT decoction was injected into rat duodenum 2 h before cerebral ischemia, the oxidative brain damage after 45 min reperfusion was strongly inhibited in terms of two biochemical indications, thiobarbituric acid reactive substance formation and the loss of glutathione peroxidase. Since the QZT formula consists of 4 herbal constituents (Rhizoma atractylodis, Poria, Radix notoginseng and Radix astragali), each of the component herbs and their combinations were also examined for their protective effects on the cerebral ischemia/reperfusion injury and the effects were compared with their in vitro antioxidant potential. Although some of the incomplete formulas showed as strong antioxidant activities as complete QZT in vitro, only the complete QZT formula was effective in preventing cerebral oxidative injury in rats, and other preparations showed limited activity in vivo.
Publication
Journal: Journal of Ethnopharmacology
May/8/2016
Abstract
BACKGROUND
Er-Miao-San (EMS) is a traditional Chinese herbal formulation that contains combinations of Rhizoma Atractylodis (RA) and Cortex Phellodendri (CP). It exhibits analgesic and anti-inflammatory activities and have been used for the treatment of various "Bi Zheng" for thousand years in China. The aims of the present study were to investigate the anti-inflammatory activities of EMS and elucidate the underlying mechanisms with regard to its molecular basis of action for the best combination.
METHODS
The anti-inflammatory effects of EMS were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) and pro-inflammatory cytokine production in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS), mitogen-activated protein kinases (MAPKs) phosphorylation, p65 phosphorylation, inhibitor-κBα (IκBα) degradation, and NF-κB DNA-binding activity were further investigated.
RESULTS
The present study demonstrated that EMS could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. However, CP and RA did not have significant inhibitory effect on them. EMS also inhibited the production of tumor necrosis factor-alpha, interleukin-1 beta and macrophage chemotactic protein-1. Further investigations showed EMS could suppress iNOs expression and p38 phosphorylation. EMS significantly decreased the content of IκBα, reduced the level of phosphorylated p65 and suppressed the NF-κB DNA-binding activity. All these results suggested the inhibitory effects of EMS on the production of inflammatory mediators through the inhibition of the NF-κB pathway.
CONCLUSIONS
Our results indicated that EMS inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of the MAPK and NF-κB pathway. This study gives scientific evidence validating the use of EMS in treatment of patients with "Bi Zheng" in clinical practice in traditional Chinese medicine.
Publication
Journal: Scientific Reports
February/7/2016
Abstract
Accumulating evidence suggests the anti-inflammatory and anti-obesity activities of Rhizoma Atractylodis Macrocephalae (RAM). Here, we evaluated the anti-obesity impact of unfermented (URAM) versus fermented RAM (FRAM) using both in vitro and in vivo models. Both URAM and FRAM exhibited marked anti-inflammatory, anti-adipogenic, and anti-obesity activities, and modulation of the gut microbial distribution. However, FRAM, compared to URAM, resulted in more efficient suppression of NO production and normalization of transepithelial electrical resistance in LPS-treated RAW 264.7 and HCT 116 cells, respectively. Compared to URAM, FRAM more effectively reduced the adipose tissue weight; ameliorated the serum triglyceride and aspartate transaminase levels; restored the serum HDL level and intestinal epithelial barrier function in the LPS control group. The relative abundance of Bifidobacterium and Akkermansia as well as Bacteriodetes/Firmicutes ratio in the gut of the LPS control group was significantly enhanced by both URAM and FRAM. However, FRAM, but not URAM, resulted in a significant increase in the distribution of Bacteriodetes and Lactobacillus in the gut of the HFD + LPS group. Our results suggest that FRAM with probiotics can exert a greater anti-obesity effect than URAM, which is probably mediated at least in part via regulation of the intestinal microbiota and gut permeability.
Publication
Journal: Vaccine
May/18/2009
Abstract
This study was designed to evaluate the effects of oral administration of a water extract made from the Rhizoma Atractylodis Macrocephalae (RAM) on the immune responses in mice immunized with FMDV type O vaccine. Thirty-five ICR mice were randomly divided into five groups with seven animals in each group, and orally administered daily for 4 days at a dose equivalent to 0, 0.0625, 0.125, 0.25 or 0.5 g of dried RAM, respectively. After that, the animals were subcutaneously immunized twice with FMDV vaccine at 2-week intervals. Blood samples were collected 3 weeks after boosting for measurement of FMDV-specific IgG titers and the IgG subclasses, lymphocyte proliferation as well as production IL-5 and IFN-gamma. Results indicated that serum FMDV-specific IgG titers and the IgG subclass responses were significantly enhanced in mice orally administered RAM at the dose of 0.25 or 0.5 g when compared with the control group (P<0.05). Splenocyte proliferation in response to Con A and LPS and production of IL-5 and IFN-gamma by splenocytes were also significantly enhanced (P<0.05). Considering the immunomodulatory effect and safety of RAM demonstrated in this study, this herb deserves further investigation to evaluate its potential improvement of FMD vaccination in other animals such as pigs, goats and cattle.
Publication
Journal: Molecular Biology Reports
January/13/2013
Abstract
This study was designed to determine the possible protective effect of polysaccharides extract of rhizoma atractylodis macrocephalae on heart function in aged rats. Polysaccharides extract of rhizoma atractylodis macrocephalae was administered to aged rats. Results showed that thymus, spleen and cardiac indexs were significantly increased, whereas caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein expression, Smac/DIABLO and HtrA2/Omi mRNA expression levels were markedly reduced. It can be concluded that polysaccharides extract of rhizoma atractylodis macrocephalae may enhance immunity and improve heart function in aged rats.
Publication
Journal: Biological and Pharmaceutical Bulletin
July/8/2009
Abstract
Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.
Publication
Journal: Applied Microbiology and Biotechnology
January/30/2017
Abstract
Yupingfeng (YPF) is a kind of Astragali radix-based ancient Chinese herbal supplemented with Atractylodis Macrocephalae Rhizoma and Radix Saposhnikoviae. Increasing evidence has proven the beneficial immunomodulating activity of YPF. However, the action mechanism(s) of it is not known. Here, we explored the immunomodulatory activity of unfermented Yupingfeng polysaccharides (UYP) and fermented Yupingfeng polysaccharides (FYP) obtained using Rhizopus oligosporus SH in weaning Rex rabbits. The results showed that both UYP and FYP exhibited notable growth-promoting and immune-enhancing activities, improvement of the intestinal flora homeostasis, and maintenance of intestinal barrier integrity and functionality. Notably, compared with UYP, FYP effectively enhanced average daily gain, organ indices, interleukin-2 (IL-2), IL-4, IL-10, tumor necrosis factor-alpha (TNF-α), TLR2, and TLR4 mRNA levels in spleen, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ protein concentrations in serum, and TLR2 and TLR4 mRNA expressions in the gastrointestinal tract (GIT). Moreover, FYP exhibited greater beneficial effects in improving the intestinal flora, including augment flora diversity and the abundance of cellulolytic bacteria, reduction the abundance of Streptococcus spp. and Enterococcus spp. in the GIT, particularly the foregut and maintaining the intestinal barrier integrity and functionality by upregulating zonula occludens 1, claudin, polymeric immunoglobulin receptor, trefoil factor, and epidermal growth factor mRNA levels in the jejunum and ileum. Our results indicated the immunoenhancement effect of FYP is superior over that of UYP, which is probably related with the amelioration of the intestinal microflora and intestinal barrier in the foregut.
Publication
Journal: Evidence-based Complementary and Alternative Medicine
December/15/2014
Abstract
Activation of spinal glial cells plays a crucial role in the pathogenesis of neuropathic pain. An administration of oxaliplatin, an important anticancer drug, often induces acute neuropathic cold hypersensitivity and/or mechanical hypersensitivity in patients. Gyejigachulbu-tang (GBT), a herbal formula comprising Cinnamomi Cortex, Paeoniae Radix, Atractylodis Lanceae Rhizoma, Zizyphi Fructus, Glycyrrhizae Radix, Zingiberis Rhizoma, and Aconiti Tuber, has been used in East Asia to treat various pain symptoms, especially in cold patients. This study investigated whether and how GBT alleviates oxaliplatin-induced cold and mechanical hypersensitivity in rats. The behavioral signs of cold and mechanical hypersensitivity were evaluated by a tail immersion test in cold water (4°C) and a von Frey hair test, respectively. The significant cold and mechanical hypersensitivity were observed 3 days after an oxaliplatin injection (6 mg/kg, i.p.). Daily oral administration of GBT (200, 400, and 600 mg/kg) for 5 days markedly attenuated cold and mechanical hypersensitivity. Immunoreactivities of glial fibrillary acidic protein (GFAP, astrocyte marker) and OX-42 (microglia marker) in the spinal dorsal horn were significantly increased by an oxaliplatin injection, which were restored by GBT administration. These results indicate that GBT relieves oxaliplatin-induced cold and mechanical hypersensitivity in rats possibly through the suppression of spinal glial activation.
Publication
Journal: Phytotherapy Research
September/24/2015
Abstract
Yu Ping Feng San (YPFS), a Chinese herbal decoction comprised of Astragali Radix (Huangqi), Atractylodis Macrocephalae Rhizoma (Baizhu) and Saposhnikoviae Radix (Fangfeng), has been used clinically for colds and flus; however, the action mechanism of which is not known. Previously, we had demonstrated that YPFS could modulate inflammatory response and phagocytosis in exerting anti-viral and anti-bacterial effects. Here, we further evaluated the bioactivities of YPFS in gene expression regulated by interferon (IFN) signaling and neuraminidase activity of influenza virus A. Application of YPFS onto cultured murine macrophages, the expressions of mRNAs encoding ribonuclease L (RNaseL), myxovirus (influenza virus) resistance 2 (Mx2), protein kinase R (PKR) and IFN-stimulated gene 15 (ISG15) were induced from 2 to 30 folds in dose-dependent manners. In parallel, the transcriptional activity of IFN-stimulated response element (ISRE), an up stream regulator of the above anti-viral proteins, was also triggered by YPFS treatment. Conversely, YPFS was found to suppress the neuraminidase activity of influenza virus A in cultured epithelial cells, thereby preventing the viral release and spreading. Taken together, YPFS exerted anti-bacterial and anti-viral effects in innate immunity.
load more...