Yu Zhang
Best match
All
Search in:AllTitleAbstractAuthor name
Publications
(6K+)
Publication
Journal: AIDS research and human retroviruses
November/11/2018
Abstract
Since the emergence of CRF55_01B among men who have sex with men (MSM) group in China, more and more circulating recombinant forms (CRFs) and unique recombinant forms have been identified in the population in China. Here we characterize a novel CRF (CRF80_0107) consisted of CRF01_AE and CRF07_BC segments from three epidemiologically unlinked MSM. Two near full-length genome (NFLG) sequences were amplified and sequenced in two halves with RNA extracted from the plasma of two MSM in Beijing. Another gag-pol sequence was obtained from Los Alamos HIV Sequence Database with accession number KX198573, which was isolated from a man who has sex with men in Hebei province. Phylogenetic analysis based on NFLG sequences revealed that CRF80_0107 formed a monophyletic cluster with high bootstrap value of 100%. Recombination analysis demonstrated that the genome of CRF80_0107 was separated into eight segments by seven breakpoints. The subregion trees constructed by neighbor-joining method confirmed that those segments were originated from CRF01_AE and CRF07_BC strains circulating among MSM group in China. The emergence of CRF80_0107 indicates the frequent generation of novel recombinant forms and the increasing complication of HIV-1 epidemic among MSM group in China. This highlighted the importance of monitoring HIV-1 molecular epidemiological characteristics and the urgency for reducing HIV-1 epidemic among MSM in China.
Related with
Publication
Journal: American journal of translational research
November/12/2018
Abstract
Currently sevoflurane is the volatile anesthetic most wildly used in pediatric surgery. Whether neonatal exposure to sevoflurane brings about a long-lasting adverse impact even at juvenile and adult age, attracts extensive concerns. However, to date the consensus has not been reached and how exposure to sevoflurane in early life affects long-term ability of learning and memory is not fully elucidated. To obtain further insight into this issue, 32 neonatal SD rats were assigned into control group (group C, n=16) and sevoflurane group (group SEV, n=16). At postnatal day 7 (P7), 14 (P14) and 21 (P21) rats pups in group SEV received repeated exposure to 2.6% sevoflurane for 2 h. At juvenile and adult age, Morris water maze (MWM) was used to determine the spatial memory performance. Subsequently long-term and short-term synaptic plasticity in hippocampal CA1 region were investigated by in vivo electrophysiological method. Our behavioral data revealed that repeated exposure to 2.6% sevoflurane in early life did not result in marked behavioral abnormalities. However, in electrophysiological experiment, long-term potentiation (LTP) in hippocampal neurons of animals neonatally exposed to sevoflurane was significantly inhibited as compared to animals in group C at both juvenile and adult age. Pair-pulse facilitation (PPF) ratio in group SEV at juvenile and adult age was augmented to varying extent. These effects were most noticeable at juvenile stage with tendency of alleviation during adulthood. The present study provides an alternative explanation for the mechanism underlying developmental neurotoxicity of sevoflurane, which may ameliorate future preventive and therapeutic strategies.
Publication
Journal: The journal of physical chemistry. A
October/21/2014
Abstract
A new energetic copper complex of dinitroacetonitrile (DNANT), [Cu(NH3)4](DNANT)2, was first synthesized through an unexpected reaction. The thermal decomposition of [Cu(NH3)4](DNANT)2 was studied with DSC and TG/DTG methods. The gas products were analyzed through a TG-FTIR-MS method. The nonisothermal kinetic equation of the exothermic process is dα/dT = 10(10.92)/β4(1 - α)[-ln(1 - α)](3/4) exp(-1.298 × 10(5)/RT). The self-accelerating decomposition temperature and critical temperature of thermal explosion are 217.9 and 221.0 °C. The specific heat capacity of [Cu(NH3)4](DNANT)2 was determined with a micro-DSC method, and the molar heat capacity is 512.6 J mol(-1) K(-1) at 25 °C. Adiabatic time-to-explosion of Cu(NH3)4(DNANT)2 was also calculated to be about 137 s.
Publication
Journal: Organic letters
December/27/2018
Abstract
A pair of chiral binaphthyl enantiomers ( S-/ R-6) incorporating a tetraphenylethene (TPE) moiety as an aggregation-induced emission (AIE) active group exhibits bright yellow circularly polarized electroluminescence (CP-EL) emission with a remarkable gEL value, low turn-on voltage, and high brightness in the nondoped CP organic light emitting diodes (CP-OLEDs). This work provides a new strategy to develop doping-free CP-OLED materials.
Publication
Journal: Acta biomaterialia
June/16/2018
Abstract
Locoregional recurrence of breast cancer after tumor resection represents several clinical challenges. Here, we demonstrate that co-delivery of chemotherapy and thermotherapeutic agents by a magnetic supramolecular hydrogel (MSH) following tumor resection prevents tumor recurrence in a breast cancer mouse model. The self-assembled MSH was designed through the partial inclusion complexation associated with the threading of α-CD on the copolymer moieties on the surface of the PEGylated iron oxide (Fe3O4) nanoparticles, which enables shear-thinning injection and controllable thermoreversible gel-sol transition. MSH was injected to the postoperative wound uniformly, which became mobile and perfect match with irregular cavity without blind angle due to the magnetocaloric gel-sol transition when exposed to alternating current magnetic field (ACMF). The magnetic nanoparticle-mediated induction heat during the gel-sol transition process caused the triggered release of dual-encapsulated chemotherapeutic drugs and provided an effect of thermally induced cell damage. The hierarchical structure of the MSH ensured that both hydrophobic and hydrophilic drugs can be loaded and consecutively delivered with different release curves. The hydrogel nanocomposite might provide a potential locally therapeutic approach for the precise treatment of locoregional recurrence of cancer.
UNASSIGNED
Tumor recurrence after resection represents several clinical challenges. In this study, we prepared shear-thinning injectable magnetic supramolecular hydrogel (MSH) and demonstrated their therapeutic applications in preventing the post-operative recurrence of breast cancer with facile synthesis and minimally invasive implantation in vivo. MSH was injected to the postoperative wound uniformly, which become mobile and perfect match with irregular cavity without blind angle through magnetocaloric gel-sol transition when exposed to ACMF. The magnetic nanoparticles mediated induction heat during the gel-sol transition process caused the triggered release of dual-encapsulated chemotherapeutic drugs as well as thermally induced cell damage. This study demonstrates that MSH with the controlled administration of combined thermo-chemotherapy exhibit great superiority in terms of preventing post-operation cancer relapse.
Publication
Journal: Journal of natural products
May/24/2018
Abstract
The phytochemical study of Euphorbia resinifera afforded 18 structurally diverse diterpenoids, including 14 new ingol-type diterpenoids, euphorblins A-N (1-14), a new rhamnofolane diterpenoid, euphorblin O (15), and three known analogues (16-18). The structures of these compounds were deduced using 2D NMR spectroscopy and NOE experiments. The structure of compound 1 was confirmed by single-crystal X-ray crystallography. The abilities of the compounds to enhance lysosomal biosynthesis were evaluated through LysoTracker Red staining. Among the 10 active compounds, compounds 2, 4, and 18 showed remarkable immunofluorescence strength, and their LysoTracker staining intensities were 155.9%, 143.5%, and 140.7%, respectively, greater than that of the control. A series of lysosomal genes were also found to be upregulated by these compounds, which further confirms their ability to induce lysosome biosynthesis and suggests that these diterpenoids have potential as lead compounds for the development of drugs for the treatment of lysosome-related diseases.
Related with
Publication
Journal: Current genetics
November/25/2018
Abstract
Lactate dehydrogenase (LDH) widely exists in organisms, which catalyzes the interconversion of pyruvate into lactate with concomitant interconversion of NADH and NAD+. In this study, two L-type lactate dehydrogenase genes FgLDHL1 and FgLDHL2 were characterized in an ascomycete fungus Fusarium graminearum, a causal agent of wheat head blight. Both the single-gene deletion mutants of FgLDHL1 or FgLDHL2 exhibited phenotypic defects in vegetative growth, sporulation, spore germination, L-lactate biosynthesis and activity. Additionally, the two L-lactate dehydrogenases were involved in the utilization of carbon sources and maintenance of redox homeostasis during spore germination. Pathogenicity assays showed that ΔFgLDHL1 exhibits reduced virulence on wheat spikelets and on corn stigmas, suggesting that it was indirectly correlated with a reduced level of deoxynivalenol accumulation. These results indicate that FgLDHL1 and FgLDHL2 play multiple roles in the developmental processes and pathogenesis in F. graminearum, and help understand the functional diversity of D-/L-lactate dehydrogenase in phytopathogenic fungi.
Related with
Publication
Journal: Oncology letters
November/13/2018
Abstract
A-kinase anchoring protein 1 (AKAP1) plays important regulatory roles in the regulation of mitochondrial function, oxidative metabolism, and cell survival. However, the expression pattern and prognostic value of AKAP1 in hepatocellular carcinoma (HCC) remains unclear. AKAP1 expression levels in tumor and matched non-tumor tissues were evaluated using reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining. Kaplan-Meier and Cox regression analyses were used to analyze the survival rates. We found that AKAP1 protein expression was increased in HCC tissues, and high AKAP1 expression was associated with tumor size (P=0.024), Tumor-Node-Metastasis stage (P=0.0296) and portal vein thrombosis (P=0.00498). Kaplan-Meier survival analyses further revealed that high AKAP1 expression was associated with poor overall (P=0.004) and disease-free survival (DFS) (P=0.002) rates in patients with HCC. Multivariate survival analysis revealed that AKAP1 served as an independent poor prognostic factor for DFS rates. The findings of the present study indicated that AKAP1 expression may contribute to HCC progression. High AKAP1 expression could serve as a valuable prognostic biomarker in predicting the survival of patients with HCC following radical resection.
Related with
Publication
Journal: BMC medical genetics
November/13/2018
Abstract
BACKGROUND
Glycogen Storage Disease Type III (GSD III) is a rare autosomal recessive metabolic disorder caused by AGL gene mutation. There is significant heterogeneity between the clinical manifestations and the gene mutation of AGL among different ethnic groups. However, GSD III is rarely reported in Chinese population.
METHODS
In this study, we aimed to study the genetic and clinical characteristics of four patients with GSD IIIa from China, especially the neurological manifestations. Meanwhile, we conducted a literature review of GSD IIIa cases reported in Chinese population to investigate the relationship between genotype and phenotype.
CONCLUSIONS
Three different AGL gene mutations were identified in our patients: c.206dupA, c.1735 + 1G > T and c.2590 C>T. Moreover, progressive myopathy accompanied by elevated creatine kinase level was the main manifestation of our patients in adolescents. Our results showed that AGL c.206dupA was a novel mutation and caused severe clinical manifestations. AGL c.1735 + 1G > T might be a recurrent mutation in the Chinese population. Genetic analysis of AGL gene mutation combined with muscle magnetic resonance imaging (MRI) might provide greater benefit to the patient in diagnosing GSD IIIa, rather than an invasive diagnostic procedure of biopsy.
Related with
Publication
Journal: Technology in cancer research & treatment
November/13/2018
Abstract
Photoacoustic microscopy is dominantly sensitive to the endogenous optical absorption, while a fluorescence optical microscopy can detect the fluorescence emission to obtain the image of a sample. To some extent, the physical processes of the 2 methods are opposite, one is absorption and another is emission, but both can be used to image cells. In this article, a simultaneous dual-mode imaging system of photoacoustic microscopy and fluorescence optical microscopy is set up to image tobacco cells. Furthermore, gold nanoparticles, which have a large absorption coefficient and enough fluorescence emission with wavelength of 512 nm, are used to label certain drugs and added to the tobacco cells. Then based on the simultaneous dual-mode microscopy imaging system, the photoacoustic microscopy and fluorescence optical microscopy images of gold nanoparticle-labeled tobacco cells are obtained. The final purpose of this experimental research is to detect if the labeled drugs can enter the cells by the positions of the gold nanoparticles. This will help the experts to deliver organic pesticide more accurately and effectively. The experimental results show that by gold nanoparticle labeling technology, the imaging quality of photoacoustic microscopy and fluorescence optical microscopy can be improved, which indicates that the drugs probably enter the tobacco cells successfully.
Related with
Publication
Journal: Applied spectroscopy
November/15/2018
Abstract
Related with
Publication
Journal: Guang pu xue yu guang pu fen xi = Guang pu
August/5/2018
Abstract
The pulsed plasma thruster(PPT) is suited for various applications, e. g., attitude control, station keeping and formation flying due to its significant advantage with regard to the related savings of wet system mass,small volume and high specific impulse. In order to elaborate the mechanism of PPT operation process, the optical emission spectrum was conducted on a breech-fed PPT with tongue electrodes. The results show that plasma plume mainly consists of C, F, C+, F+ and C2+, besides Cu+ and Cu2+ were detected in plasma which were produced by electrodes ablation. The plasma distribution is asymmetric in the discharge channel, the maximum of plasma density of plasma appears at the central axis of discharge channel and the plasma density nearby the anode is much higher than that nearby the cathode. The composition of plasma is not symmetric and not uniform. The distribution of F+ and neutral particle concentrate close to the anode. The electron temperature is about 6.67 eV derived from the optical emission spectra by Boltzmann linear fitting. Evolution of plasma emission spectrum was derived at the fourth measurement point, the results show that there is much difference between different discharge stages for the composition of plume and the proportion of each component.
Related with
Publication
Journal: ACS applied materials & interfaces
July/30/2018
Abstract
Large-area uniform of single-crystal tungsten disulfide (WS2) is important for advanced optoelectronics based on two-dimensional (2D) atomic crystals. However, difficulties in controlling the interrelated growth parameters restrict its development in devices. Herein, we present the synthesis of triangular monolayered WS2 flakes with good uniformity and single crystal by adjusting the introduction time of sulfur precursor and the distances between the sources and substrates to control the nucleation density. Investigation of the morphology and structure by transmission electron microscopy and Raman spectroscopy indicates that a series of triangular (side length of 233 μm) monolayered WS2 flakes shows high-quality structure and homogenous crystallinity. Field-effect transistors based on the fabricated triangular monolayered WS2 with single crystal demonstrate environmentally stable charge transport with a field-effect mobility of 50.5 cm2/V s and current modulation Ion/ Ioff of ∼107. The results of this study pave the way for the application of monolayered WS2 in a multitude of 2D-material-based devices.
Publication
Journal: Nanoscale
May/19/2013
Abstract
The transient current through an array of as many as 1000 quantum dots is simulated with two newly developed quantum mechanical methods. To our surprise, upon switching on the bias voltage, the current increases linearly with time before reaching its steady state value. And the time required for the current to reach its steady state value is proportional to the length of the array, and more interestingly, is exactly the time for a conducting electron to travel through the array at the Fermi velocity. These quantum phenomena can be understood by a simple analysis on the energetics of an equivalent classical circuit. An experimental design is proposed to confirm the numerical findings.
Publication
Journal: ACS nano
August/19/2019
Abstract
α-MnS, as a nonlayered p-type material with a wide band gap of 2.7 eV, has been expected to supplement the scarcity of two-dimensional (2D) p-type semiconductors, which are desperately required for constructing atomically thin p-n junctions. However, the preparation and property investigation of 2D α-MnS has scarcely been reported so far. Herein, we report the controlled synthesis of ultrathin large-scale α-MnS single crystals down to 4.78 nm via a facile chemical vapor deposition (CVD) method. Importantly, top-gating field-effect transistors based on the as-synthesized α-MnS nanosheets show p-type transport behavior with an ultrahigh on/off ratio exceeding 106, surpassing most reported p-type 2D materials. Meanwhile, α-MnS phototransistors exhibit an ultrahigh detectivity of 3.2 × 1014 Jones, as well as an excellent photoresponsivity of 139 A/W and a fast response time of 12 ms. Besides, outstanding environmental stability and admirable flexibility have also been demonstrated in the as-synthesized α-MnS nanosheets. We believe that this work broadens the scope of the CVD synthesis strategy for various p-type 2D materials and demonstrates their significant application potentials in electronics and optoelectronics.
Publication
Journal: Biomaterials
July/22/2018
Abstract
Usually the tumor thermal therapy is accompanied with inflammatory reactions, which in turn promote tumor growth and metastasis meanwhile. Herein, we prepared novel trifunctional PEG-IL/ZrO2-Ag@SiO2 nanorattles, which can be used for CT imaging-guided simultaneous tumor microwave thermal therapy and resistance to bacterial infection. Under the microwave irradiation, the nanorattles present excellent microwave thermal properties. Simultaneously, the nanorattles have good antibacterial effect in vitro and in vivo, which can restrain bacterial growth effectively and reduce inflammation response during the microwave thermal therapy. In addition, the nanorattles also have the function of CT imaging, which can monitor the tumor therapy in real time. The strategy of simultaneous microwave thermal therapy and inflammation management effectively inhibits tumor growth in mice with a good anti-tumor effect (96.4%). This proof-of-concept investigation provides a simple and reliable strategy for tumor treatment and inhibiting inflammatory reaction using a multifunctional nanomaterial, indicating the great application prospect in tumor treatment by simultaneous eradicating tumor tissue and managing inflammation.
Related with
Publication
Journal: Plants (Basel, Switzerland)
November/8/2019
Abstract
Seed shattering is an important agronomic trait in rice domestication. In this study, using a near-isogenic line (NIL-hs1) from Oryza barthii, we found a hybrid seed shattering phenomenon between the NIL-hs1 and its recurrent parent, a japonica variety Yundao 1. The heterozygotes at hybrid shattering 1 (HS1) exhibited the shattering phenotype, whereas the homozygotes from both parents conferred the non-shattering. The causal HS1 gene for hybrid shattering was located in the region between SSR marker RM17604 and RM8220 on chromosome 4. Sequence verification indicated that HS1 was identical to SH4, and HS1 controlled the hybrid shattering due to harboring the ancestral haplotype, the G allele at G237T site and C allele at C760T site from each parent. Comparative analysis at SH4 showed that all the accessions containing ancestral haplotype, including 78 wild relatives of rice and 8 African cultivated rice, had the shattering phenotype, whereas all the accessions with either of the homozygous domestic haplotypes at one of the two sites, including 17 wild relatives of rice, 111 African cultivated rice and 65 Asian cultivated rice, showed the non-shattering phenotype. Dominant complementation of the G allele at G237T site and the C allele at C760T site in HS1 led to a hybrid shattering phenotype. These results help to shed light on the nature of seed shattering in rice during domestication and improve the moderate shattering varieties adapted to mechanized harvest.
Publication
Journal: Plant biotechnology journal
November/12/2018
Related with
Publication
Journal: Frontiers in physiology
November/7/2019
Abstract
The increased proliferation and migration of airway smooth muscle cells (ASMCs) are critical processes in the formation of airway remodeling in asthma. Long non-coding RNAs (lncRNAs) have emerged as key mediators of diverse physiological and pathological processes, and are involved in the pathogenesis of various diseases, including asthma. LncRNA Malat1 has been widely reported to regulate the proliferation and migration of multiple cell types and be involved in the pathogenesis of various human diseases. However, it remains unknown whether Malat1 regulates ASMC proliferation and migration. Here, we explored the function of Malat1 in ASMC proliferation and migration in vitro stimulated by platelet-derived growth factor BB (PDGF-BB), and the underlying molecular mechanism involved. The results showed that Malat1 was significantly upregulated in ASMCs treated with PDGF-BB, and knockdown of Malat1 effectively inhibited ASMC proliferation and migration induced by PDGF-BB. Our data also showed that miR-150 was a target of Malat1 in ASMCs, and inhibited PDGF-BB-induced ASMC proliferation and migration, whereas the inhibition effect was effectively reversed by Malat1 overexpression. Additionally, translation initiation factor 4E (eIF4E), an important regulator of Akt signaling, was identified to be a target of miR-150, and both eIF4E knockdown and Akt inhibitor GSK690693 inhibited PDGF-BB-induced ASMC proliferation and migration. Collectively, these data indicate that Malat1, as a competing endogenous RNA (ceRNA) for miR-150, derepresses eIF4E expression and activates Akt signaling, thereby being involved in PDGF-BB-induced ASMC proliferation and migration. These findings suggest that Malat1 knockdown may present a new target to limit airway remodeling in asthma.
Publication
Journal: Critical reviews in eukaryotic gene expression
November/3/2019
Abstract
Several studies have investigated the relationship between ABCB1 G2677T/A polymorphism and breast cancer susceptibility; however, the published results remain controversial. Thus, we conducted a meta-analysis to synthetically evaluate the association of this polymorphism with breast cancer risk. A computerized literature search was systematically carried out in PubMed, EMBASE, ScienceDirect, China National Knowledge Infrastructure and Wanfang Databases to identify the published case-control studies investigating the relationship between ABCB1 G2677T/A polymorphism and breast cancer risk. The strength of association was assessed using odds ratios (ORs) with 95% confidence intervals (CIs). In total, six studies, including 4,791 cases and 7,042 controls, were included. The results of our quantitative synthesis suggest that there is no significant association between ABCB1 G2677T/A polymorphism and breast cancer risk in overall comparisons under four genetic models (heterozygote: OR = 1.01, 95% CI = 0.92-1.09, P = 0.90; homozygote: OR = 1.01, 95% CI = 0.65-1.55, P = 0.97; recessive model: OR = 1.06, 95% CI = 0.75-1.50, P = 0.76; and dominant model: OR = 0.98, 95% CI = 0.77-1.24, P = 0.85). Similarly, no significant association was observed in the stratification analyses by ethnicity and control source. In conclusion, this meta-analysis suggests that ABCB1 G2677T/A polymorphism is not associated with genetic susceptibility to breast cancer.
Publication
Journal: Parasitology research
October/27/2019
Abstract
Chrysomya bezziana is an obligate, myiasis-causing fly in humans and warm-blooded animals throughout the tropical and subtropical Old World. We report a case of cutaneous myiasis due to C. bezziana in a dog from Guangxi province in China. A total of 35 maggots were removed from the lesions. Direct sequencing of the mitochondrial cytochrome b gene showed that the specimen belonged to haplotype CB_bezz02, which was previously reported in Malaysia and the Gulf region. This paper also reviews reported cases of screwworm myiasis from humans and animals in China. Geographical records indicate that the distribution of C. bezziana is expanding, suggesting that an integrated pest management control should be taken into consideration in China.
Publication
Journal: Clinical genetics
November/1/2019
Abstract
The genotype-first approach has been successfully applied and has elucidated several subtypes of autism spectrum disorder (ASD). However, it requires very large cohorts because of the extensive genetic heterogeneity. We investigate the alternate possibility of whether phenotype-specific genes can be identified from a small group of patients with specific phenotype(s). To identify novel genes associated with ASD and abnormal head circumference using a phenotype-to-genotype approach, we performed whole-exome sequencing on 67 families with ASD and abnormal head circumference. Clinically relevant pathogenic or likely pathogenic variants account for 23.9% of patients with microcephaly or macrocephaly, and 81.25% of those variants or genes are head-size associated. Significantly, recurrent pathogenic mutations were identified in two macrocephaly genes (PTEN, CHD8) in this small cohort. De novo mutations in several candidate genes (UBN2, BIRC6, SYNE1, and KCNMA1) were detected, as well as one new candidate gene (TNPO3,) implicated in ASD and related neurodevelopmental disorders. We identify genotype-phenotype correlations for head-size-associated ASD genes and novel candidate genes for further investigation. Our results also suggest a phenotype-to-genotype strategy would accelerate the elucidation of genotype-phenotype relationships for ASD by using phenotype-restricted cohorts. This article is protected by copyright. All rights reserved.
Publication
Journal: Microbial pathogenesis
December/2/2018
Abstract
The present study was aimed to investigate and understand the mechanism of inhibitory effect of phenyl benzoxime on proliferation of SNU-306 cells. Proliferation of SNU-306 cells transfected with wild-type p53-induced phosphatase 1 (Wip1)-siRNA or treated with phenyl benzoxime was examined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Induction of apoptosis was examined by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide staining. In SNU-306 cells Wip1 mRNA and protein expression was found to be significantly (p < 0.05) higher compared to normal cells. However, Wip1-siRNA transfection significantly (p < 0.02) inhibited the expression of Wip1 at 60 nmol/l. The proliferation of SNU-306 cells was inhibited to 3.7% on transfection with Wip1-siRNA. Phenyl benzoxime reduced proliferation to 92.0, 75.0, 49.0, 19.0 and 4.0% at 1, 2, 4, 8 and 10 μM doses, respectively. The expression of Wip1 was significantly (p < 0.01) suppressed in SNU-306 cells on phenyl benzoxime treatment. Phenyl benzoxime induced apoptosis in 74.73% cells at 10 μM doses compared to 1.34% in control. Treatment with phenyl benzoxime markedly increased the expression of Bax, caspase-3 and p53 and decreased Bcl-2 mRNA. Moreover, addition of SB203580 to cultures of SNU-306 cells significantly (p < 0.01) prevented phenyl benzoxime mediated inhibition of cell proliferation. Phenyl benzoxime induces apoptosis and inhibits SNU-306 cell proliferation by silencing Wip1 expression through p38 MAPK signaling pathway activation. Therefore, phenyl benzoxime can act as an important chemotherapeutic agent for breast cancer treatment.
Related with
Publication
Journal: Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
October/1/2012
Abstract
Effects of heart failure on the mechanical function of the heart are difficult to assess experimentally, yet they pose a serious physiological challenge. By integrating modified cellular action potential model based on experimental data of heart failure with modified Hunter-McCulloch-ter Keurs (HMT) mechanical heart cell model, an electromechanical cardiac cell model was constructed and used to study cellular mechanical properties of both fast and slow contracting myocytes in heart failure. The simulation results show that the differences of the electrical responses between failing cells and normal cells can cause slowing relaxation of the Ca2+ transient, and the difference of the Ca2+-TnC concentrations between fast and slow myocytes in failing hearts is much reduced than in nonfailing hearts. It results in a decrease of force, which might diminish the role of mechanoelectric feedback (MEF), then induce an increase of transmural action potential duration (APD) gradients. It might cause arrhythmia in heart failure. These results are in good accordance with experimental findings reported in the literatures and might motivate further research on modeling and simulation of heart failure at the tissue and the whole organ levels.
Related with
load more...