Yan Zhang
Best match
All
Pubmeds
(6,921)
Pubmed
Journal: Nature genetics
February/21/2013
Abstract

Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.

Pubmed
Journal: FEBS letters
July/23/2007
Abstract

Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.

Pubmed
Journal: Journal of virology
April/23/2012
Abstract

Duck tembusu virus (DTMUV) is an emerging agent that causes a severe disease in ducks. We report herein the first complete genome sequences of duck tembusu virus strains YY5, ZJ-407, and GH-2, isolated from Shaoxing ducks, breeder ducks, and geese, respectively, in China. The genomes of YY5, ZJ-407, and GH-2 are all 10,990 nucleotides (nt) in length and encode a putative polyprotein of 3,426 amino acids. It is flanked by a 5' and a 3' noncoding region (NCR) of 94 and 618 nt, respectively. Knowledge of the whole sequence of DTMUV will be useful for further studies of the mechanisms of virus replication and pathogenesis.

Pubmed
Journal: Biochemistry
June/15/2003
Abstract

Abietadiene synthase from grand fir catalyzes two sequential, mechanistically distinct cyclizations, of geranylgeranyl diphosphate and of copalyl diphosphate, in the formation of a mixture of abietadiene isomers as the committed step of diterpenoid resin acid biosynthesis. Each reaction is independently conducted at a separate active site residing in what were considered to be structurally distinct domains typical of terpene cyclases. Despite the presence of an unusual 250-residue N-terminal insertional element, a tandem pair of charged residues distal to the insertion was shown to form a functional part of the C-terminal active site. Because abietadiene synthase resembles the ancestral plant terpene cyclase, this observation suggests an early evolutionary origin of catalytically important positively charged residues at the N-terminus of enzymes of this general class. A series of N- and C-terminal truncations of this enzyme were constructed and characterized, both alone and as mixtures of adjacent polypeptide pairs, to assess the proposed domain architecture, the function of the insertional element, and the role of presumptive interdomain contacts. These studies indicated a requirement for the insertional element in functional folding and allowed definition of the minimum primary structure of N- and C-terminal active site peptides. Most importantly, the results showed that, although the two active sites of abietadiene synthase are catalytically independent, substantial contact between the two regions is essential for the functional competence of this enzyme. Thus, the two cyclization sites of abietadiene synthase cannot be dissected into catalytically distinct domains, and, therefore, abietadiene synthase is unlikely to have arisen by fusion of two previously independent genes.

Pubmed
Journal: Cell
May/19/2010
Abstract

Actively dividing cells perform robust and accurate DNA replication during fluctuating nutrient availability, yet factors that prevent disruption of replication remain largely unknown. Here we report that DksA, a nutrient-responsive transcription factor, ensures replication completion in Escherichia coli by removing transcription roadblocks. In the absence of DksA, replication is rapidly arrested upon amino acid starvation. This arrest requires active transcription and is alleviated by RNA polymerase mutants that compensate for DksA activity. This replication arrest occurs independently of exogenous DNA damage, yet it induces the DNA-damage response and recruits the main recombination protein RecA. This function of DksA is independent of its transcription initiation activity but requires its less-studied transcription elongation activity. Finally, GreA/B elongation factors also prevent replication arrest during nutrient stress. We conclude that transcription elongation factors alleviate fundamental conflicts between replication and transcription, thereby protecting replication fork progression and DNA integrity.

Pubmed
Journal: FASEB journal : official publication of the Federation of American Societies for Experimental Biology
July/20/2010
Abstract

Granulin epithelin precursor (GEP) has been implicated in development, tissue regeneration, tumorigenesis, and inflammation. Herein we report that GEP stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo, and GEP-knockdown mice display skeleton defects. Similar to bone morphogenic protein (BMP) 2, application of the recombinant GEP accelerates rabbit cartilage repair in vivo. GEP is a key downstream molecule of BMP2, and it is required for BMP2-mediated chondrocyte differentiation. We also show that GEP activates chondrocyte differentiation through Erk1/2 signaling and that JunB transcription factor is one of key downstream molecules of GEP in chondrocyte differentiation. Collectively, these findings reveal a novel critical role of GEP growth factor in chondrocyte differentiation and the molecular events both in vivo and in vitro.

Pubmed
Journal: Dalton transactions (Cambridge, England : 2003)
July/7/2016
Abstract

Two series of lanthanide dinuclear complexes with the general formulae, [Ln(n-PNO)(Bza)3(H2O)] {Bza = benzoic acid; n = 3, n-PNO = 3-picoline N-oxide, Dy(1) and Er(2); and n = 4, n-PNO = 4-picoline N-oxide, Nd(3), Eu(4), Gd(5), Tb(6), Dy(7), Er(8) and Y(9)} have been successfully synthesized by the hydrothermal method. Single-crystal X-ray diffraction experiments illustrate that the two series of compounds possess similar carboxylic ligand-bridged dinuclear structure and coordination geometry around the lanthanide ions despite the different methyl-substituent positions on the neutral ligand. Comparative studies of the Dy analogues in the static-field measurements reveal only a little difference with a small butterfly-shaped opening for complex 1 and a close hysteresis loop for 7 at 2.0 K. However, systematic investigations of the alternating-current (ac) measurements indicate that the different substituent positions of the picoline N-oxide ligand have a significant effect on the magnetic relaxation dynamics. A more substantial suppression of the quantum tunnelling of magnetization (QTM) effect and pronounced slow magnetic relaxation were observed in complex 7 as compared to 1 under both zero and a 1 kOe static field.

Related with
Pubmed
Journal: Psychiatry and clinical neurosciences
October/12/2009
Abstract

OBJECTIVE

Repeated exposure to heroin, a typical opiate, causes neuronal adaptation and may result in anatomical changes in specific brain regions, particularly the frontal and limbic cortices. The volume changes of gray matter (GM) of these brain regions, however, have not been identified in heroin addiction.

METHODS

Using structural magnetic resonance imaging and an optimized voxel-based morphometry approach, the GM volume difference between 15 Chinese heroin-dependent and 15 healthy subjects was tested.

RESULTS

Compared to healthy subjects, the heroin-dependent subjects had reduced GM volume in the right prefrontal cortex, left supplementary motor cortex and bilateral cingulate cortices.

CONCLUSIONS

Frontal and cingulate atrophy may be involved in the neuropathology of heroin dependence.

Pubmed
Journal: PloS one
April/1/2012
Abstract

BACKGROUND

Large-scale outbreaks of hand, foot, and mouth disease (HFMD) occurred repeatedly in the Central Plain of China (Shandong, Anhui, and Henan provinces) from 2007 until now. These epidemics have increased in size and severity each year and are a major public health concern in mainland China.

RESULTS

Phylogenetic analysis was performed and a Bayesian Markov chain Monte Carlo tree was constructed based on the complete VP1 sequences of HEV71 isolates. These analyses showed that the HFMD epidemic in the Central Plain of China was caused by at least 5 chains of HEV71 transmission and that the virus continued to circulate and evolve over the winter seasons between outbreaks. Between 1998 and 2010, there were 2 stages of HEV71 circulation in mainland China, with a shift from evolutionary branch C4b to C4a in 2003-2004. The evolution rate of C4a HEV71 was 4.99×10(-3) substitutions per site per year, faster than the mean of all HEV71 genotypes. The most recent common ancestor estimates for the Chinese clusters dated to October 1994 and November 1993 for the C4a and C4b evolutionary branches, respectively. Compared with all C4a HEV71 strains, a nucleotide substitution in all C4b HEV71 genome (A to C reversion at nt2503 in the VP1 coding region, which caused amino acid substitution of VP1-10: Gln to His) had reverted.

CONCLUSIONS

The data suggest that C4a HEV71 strains introduced into the Central Plain of China are responsible for the recent outbreaks. The relationships among HEV71 isolates determined from the combined sequence and epidemiological data reveal the underlying seasonal dynamics of HEV71 circulation. At least 5 HEV71 lineages circulated in the Central Plain of China from 2007 to 2009, and the Shandong and Anhui lineages were found to have passed through a genetic bottleneck during the low-transmission winter season.

Pubmed
Journal: Journal of hepatology
February/24/2016
Abstract

OBJECTIVE

Hepatic ischemia/reperfusion (I/R) injury is characterized by anoxic cell injury and the generation of inflammatory mediators, leading to hepatic parenchymal cell death. The activation of interferon regulatory factors (IRFs) has been implicated in hepatic I/R injury, but the role of IRF9 in this progression is unclear.

METHODS

We investigated the function and molecular mechanisms of IRF9 in transgene and knockout mice subjected to warm I/R of the liver. Isolated hepatocytes from IRF9 transgene and knockout mice were subjected to hypoxia/reoxygenation (H/R) injury to determine the in vitro effects of IRF9.

RESULTS

The injuries were augmented in IRF9-overexpressing mice that were subjected to warm I/R of the liver. In contrast, a deficiency in IRF9 markedly reduced the necrotic area, serum alanine amino transferase/aspartate amino transferase (ALT/AST), immune cell infiltration, inflammatory cytokine levels, and hepatocyte apoptosis after liver I/R. Sirtuin (SIRT) 1 levels were significantly higher and the acetylation of p53 was decreased in the IRF9 knockout mice. Notably, IRF9 suppressed the activity of the SIRT1 promoter luciferase reporter and deacetylase activity. Liver injuries were significantly more severe in the IRF9/SIRT1 double knockout (DKO) mice in the I/R model, eliminating the protective effects observed in the IRF9 knockout mice.

CONCLUSIONS

IRF9 has a novel function of inducing hepatocyte apoptosis after I/R injury by decreasing SIRT1 expression and increasing acetyl-p53 levels. Targeting IRF9 may be a potential strategy for ameliorating ischemic liver injury after liver surgery.

Pubmed
Journal: Pathogens and disease
December/14/2015
Abstract

This study investigated whether Helicobacter pylori could activate the nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in human macrophages and the involvement of reactive oxygen species (ROS) in inflammasome activation. Phorbol-12-myristate-13-acetate (PMA)-differentiated human acute monocytic leukemia cell line THP-1 was infected with H. pylori. The levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in supernatant were measured by ELISA. Intracellular ROS level was analyzed by flow cytometry. Quantitative real-time PCR and western blot analysis were employed to determine the mRNA and protein expression levels of NLRP3 and caspase-1 in THP-1 cells, respectively. Our results showed that H. pylori infection could induce IL-1β and IL-18 production in PMA-differentiated THP-1 cells in a dose- and time-dependent manner. Moreover, secretion of IL-1β and IL-18 in THP-1 cells following H. pylori infection was remarkably reduced by NLRP3-specific small interfering RNA treatment. In addition, the intracellular ROS level was elevated by H. pylori infection, which could be eliminated by the ROS scavenger N-acetylcysteine (NAC). Furthermore, NAC treatment could inhibit NLRP3 inflammasome formation and caspase-1 activation and suppress the release of IL-1β and IL-18 from H. pylori-infected THP-1 cells. These findings provide novel insights into the innate immune response against H. pylori infection, which could potentially be used for the prevention and treatment of H. pylori-related diseases.

Pubmed
Journal: The Journal of biological chemistry
May/15/2002
Abstract

The core 3 structure of the O-glycan, GlcNAcbeta1-3GalNAcalpha1-serine/threonine, an important precursor in the biosynthesis of mucin-type glycoproteins, is synthesized by UDP-N-acetylglucosamine:GalNAc-peptide beta1,3-N- acetylglucosaminyltransferase (beta3Gn-T; core 3 synthase). The core 3 structure is restricted in its occurrence to mucins from specific tissues such as the stomach, small intestine, and colon. A partial sequence encoding a novel member of the human beta3Gn-T family was found in one of the data bases. We cloned a complementary DNA of this gene and named it beta3Gn-T6. The putative amino acid sequence of beta3Gn-T6 retains the beta3Gn-T motifs and is predicted to comprise a typical type II membrane protein. The soluble form of beta3Gn-T6 expressed in insect cells showed beta3Gn-T activity toward GalNAcalpha-p-nitrophenyl and GalNAcalpha1-serine/threonine. The beta1,3-linkage between GlcNAc and GalNAc of the enzyme reaction product was confirmed by high performance liquid chromatography and NMR analyses. beta3Gn-T6 effectively transferred a GlcNAc to the GalNAc residue on MUC1 mucin, resulting in the synthesis of a core 3 structure. Real time PCR analysis revealed that the beta3Gn-T6 transcript was restricted in its distribution, mainly to the stomach, colon, and small intestine. We concluded that beta3Gn-T6 is the most logical candidate for the core 3 synthase, which plays an important role in the synthesis of mucin-type O-glycans in digestive organs.

Pubmed
Journal: Asian Pacific journal of cancer prevention : APJCP
February/18/2014
Abstract

MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.

Pubmed
Journal: Optics express
August/3/2008
Abstract

The directional component of the retinal reflection, i.e., the optical Stiles-Crawford effect (SCE), is well established to result from the waveguiding property of photoreceptors. Considerable uncertainty, however, remains as to which retinal reflections are waveguided and thus contribute. To this end we have developed a retina camera based on spectral-domain optical coherence tomography (SD-OCT) that axially resolves (approximately 5 microm) these reflections and permits a direct investigation of the SCE origin at near infrared wavelengths. Reflections from the photoreceptor inner/outer segments junction (IS/OS) and near the posterior tip of the outer segments (PTOS) were found highly sensitive to beam entry position in the pupil with a considerable decrease in brightness occurring with an increase in aperture eccentricity. Reflections from the retinal pigment epithelium (RPE) were largely insensitive. The average directionality (rho(oct) value) at 2 degree eccentricity across the four subjects for the IS/OS, PTOS, and RPE were 0.120, 0.270, and 0.016 mm(-2), respectively. The directionality for the IS/OS approached typical psychophysical SCE measurements, while that for the PTOS approached conventional optical SCE measurements. Precise measurement of the optical SCE was found to require significant A-scan averaging.

Pubmed
Journal: Journal of molecular biology
June/18/2008
Abstract

The trace element molybdenum (Mo) is utilized in many life forms, and it is a key component of several enzymes involved in nitrogen, sulfur, and carbon metabolism. With the exception of nitrogenase, Mo is bound in proteins to a pterin, thus forming the molybdenum cofactor (Moco) at the catalytic sites of molybdoenzymes. Although a number of molybdoenzymes are well characterized structurally and functionally, evolutionary analyses of Mo utilization are limited. Here, we carried out comparative genomic and phylogenetic analyses to examine the occurrence and evolution of Mo utilization in bacteria, archaea and eukaryotes at the level of (i) Mo transport and Moco utilization trait, and (ii) Mo-dependent enzymes. Our results revealed that most prokaryotes and all higher eukaryotes utilize Mo whereas many unicellular eukaryotes including parasites and most yeasts lost the ability to use this metal. In addition, eukaryotes have fewer molybdoenzyme families than prokaryotes. Dimethylsulfoxide reductase (DMSOR) and sulfite oxidase (SO) families were the most widespread molybdoenzymes in prokaryotes and eukaryotes, respectively. A distant group of the ModABC transport system, was predicted in the hyperthermophilic archaeon Pyrobaculum. ModE-type regulation of Mo uptake occurred in less than 30% of Moco-utilizing organisms. A link between Mo and selenocysteine utilization in prokaryotes was also identified wherein the selenocysteine trait was largely a subset of the Mo trait, presumably due to formate dehydrogenase, a Mo- and selenium-containing protein. Finally, analysis of environmental conditions and organisms that do or do not depend on Mo revealed that host-associated organisms and organisms with low G+C content tend to reduce their Mo utilization. Overall, our data provide new insights into Mo utilization and show its wide occurrence, yet limited use of this metal in individual organisms in all three domains of life.

Pubmed
Journal: Plant physiology
May/13/2009
Abstract

Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

Pubmed
Journal: Blood
March/23/2009
Abstract

MLL5 is a novel trithorax group gene and a candidate tumor suppressor gene located within a 2.5-Mb interval of chromosome band 7q22 that frequently is deleted in human myeloid malignancy. Here we show that inactivation of the Mll5 gene in mice results in a 30% reduction in the average representation of hematopoietic stem cells and in functional impairment of long-term hematopoietic repopulation potential under competitive conditions. Bone marrow cells from Mll5-deficient mice were defective in spleen colony-forming assays, and the mutant mice showed enhanced susceptibility to 5-fluorouracil-induced myelosuppression. Heterozygous and homozygous Mll5 mutant mice did not spontaneously develop hematologic cancers, and loss of Mll5 did not alter the phenotype of a fatal myeloproliferative disorder induced by oncogenic Kras in vivo. Collectively, the data reveal an important role for Mll5 in HSC homeostasis and provide a basis for further studies to explore its role in leukemogenesis.

Pubmed
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/15/2011
Abstract

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

Pubmed
Journal: Kidney international
January/18/2009
Abstract

The renal renin-angiotensin system plays a major role in determining the rate of chronic renal disease progression. Treatment with activators of the vitamin D receptor retards the progression of experimental chronic renal disease, and vitamin D is known to suppress the renin-angiotensin system in other organs. Here we determined if the beneficial effects of paricalcitol (19-nor 1,25-dihydroxyvitamin D(2)) were associated with suppression of renin-angiotensin gene expression in the kidney. Rats with the remnant kidney model of chronic renal failure (5/6 nephrectomy) were given two different doses of paricalcitol thrice weekly for 8 weeks. Paricalcitol was found to decrease angiotensinogen, renin, renin receptor, and vascular endothelial growth factor mRNA levels in the remnant kidney by 30-50 percent compared to untreated animals. Similarly, the protein expression of renin, renin receptor, the angiotensin type 1 receptor, and vascular endothelial growth factor were all significantly decreased. Glomerular and tubulointerstitial damage, hypertension, proteinuria, and the deterioration of renal function resulting from renal ablation were all similarly and significantly improved with both treatment doses. These studies suggest that the beneficial effects of vitamin D receptor activators in experimental chronic renal failure are due, at least in part, to down-regulation of the renal renin-angiotensin system.

Pubmed
Journal: Metabolism: clinical and experimental
August/20/2007
Abstract

Accumulating evidence suggests that specific metabolites of estrogens, namely, catechol estrogen quinones, react with DNA to form adducts and generate apurinic sites, which can lead to the mutations that induce breast cancer. Oxidation of estradiol (E(2)) produces 2 catechol estrogens, 4-hydroxyestradiol (4-OHE(2)) and 2-OHE(2) among the major metabolites. These, in turn, are oxidized to the quinones, E(2)-3,4-quinone (E(2)-3,4-Q) and E(2)-2,3-Q, which can react with DNA. Oxidation of E(2) to 2-OHE(2) is mainly catalyzed by cytochrome P450 (CYP) 1A1, and CYP3A4, whereas oxidation of E(2) to 4-OHE(2) in extrahepatic tissues is mainly catalyzed by CYP1B1 as well as some CYP3As. The potential involvement of CYP isoforms in the further oxidation of catechols to semiquinones and quinones has, however, not been investigated in detail. In this project, to identify the potential function of various CYPs in oxidizing catechol estrogens to quinones, we used different recombinant human CYP isoforms, namely, CYP1A1, CYP1B1, and CYP3A4, with the scope of oxidizing the catechol estrogens 2-OHE(2) and 4-OHE(2) to their respective estrogen quinones, which then reacted with DNA. The depurinating adducts 2-OHE(2)-6-N3Ade, 4-OHE(2)-1-N3Ade, and 4-OHE(2)-1-N7Gua were observed in the respective reaction systems by ultraperformance liquid chromatography/tandem mass spectrometry. Furthermore, more than 100-fold higher levels of estrogen-glutathione (GSH) conjugates were detected in the reactions. Glutathione conjugates were observed, in much smaller amounts, when control microsomes were used. Depurinating adducts, as well as GSH conjugates, were obtained when E(2)-3,4-Q was incubated with CYP1B1 or control microsomes in a 30-minute reaction, further demonstrating that GSH is present in these recombinant enzyme preparations. These experiments demonstrated that CYP1A1, CYP1B1, and CYP3A4 are able to oxidize catechol estrogens to their respective quinones, which can further react with GSH, protein, and DNA, the last resulting in depurinating adducts that can lead to mutagenesis.

Pubmed
Journal: Circulation research
December/16/2009
Abstract

BACKGROUND

Aldehyde accumulation is regarded as a pathognomonic feature of oxidative stress-associated cardiovascular disease.

OBJECTIVE

We investigated how the heart compensates for the accelerated accumulation of aldehydes.

RESULTS

Aldehyde dehydrogenase 2 (ALDH2) has a major role in aldehyde detoxification in the mitochondria, a major source of aldehydes. Transgenic (Tg) mice carrying an Aldh2 gene with a single nucleotide polymorphism (Aldh2*2) were developed. This polymorphism has a dominant-negative effect and the Tg mice exhibited impaired ALDH activity against a broad range of aldehydes. Despite a shift toward the oxidative state in mitochondrial matrices, Aldh2*2 Tg hearts displayed normal left ventricular function by echocardiography and, because of metabolic remodeling, an unexpected tolerance to oxidative stress induced by ischemia/reperfusion injury. Mitochondrial aldehyde stress stimulated eukaryotic translation initiation factor 2alpha phosphorylation. Subsequent translational and transcriptional activation of activating transcription factor-4 promoted the expression of enzymes involved in amino acid biosynthesis and transport, ultimately providing precursor amino acids for glutathione biosynthesis. Intracellular glutathione levels were increased 1.37-fold in Aldh2*2 Tg hearts compared with wild-type controls. Heterozygous knockout of Atf4 blunted the increase in intracellular glutathione levels in Aldh2*2 Tg hearts, thereby attenuating the oxidative stress-resistant phenotype. Furthermore, glycolysis and NADPH generation via the pentose phosphate pathway were activated in Aldh2*2 Tg hearts. (NADPH is required for the recycling of oxidized glutathione.)

CONCLUSIONS

The findings of the present study indicate that mitochondrial aldehyde stress in the heart induces metabolic remodeling, leading to activation of the glutathione-redox cycle, which confers resistance against acute oxidative stress induced by ischemia/reperfusion.

Pubmed
Journal: Cancer letters
May/6/2009
Abstract

To characterize the biological features of side population (SP) in oral squamous cell carcinoma (OCC), SP and non-SP were sorted and compared. The SP cells were more clonogenic and in nude mice, only 10,000 SP cells were needed for tumor development compared to 1,000,000 non-SP cells. The SP cells expressed higher levels of ABCG2, ABCB1, CD44, Oct-4, Bmi-1, NSPc1 and CK19. The SP cells generated SP and non-SP populations, whereas the non-SP cells generated only non-SP. These findings provide the first evidence that SP in OCC possesses tumor stem cell phenotypes and may play an important role in OCC tumorigenesis.

Pubmed
Journal: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
March/2/2009
Abstract

BACKGROUND

No prior studies have related a tobacco-specific carcinogen to the risk of lung cancer in smokers. Of the over 60 known carcinogens in cigarette smoke, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is specific to tobacco and causes lung cancer in laboratory animals. Its metabolites, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (total NNAL), have been studied as biomarkers of exposure to NNK. We studied the relation of prospectively measured NNK biomarkers to lung cancer risk.

METHODS

In a case-control study nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we randomly selected 100 lung cancer cases and 100 controls who smoked at baseline and analyzed their baseline serum for total NNAL, cotinine, and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT), a biomarker of polycyclic aromatic hydrocarbon exposure and metabolic activation. To examine the association of the biomarkers with all lung cancers and for histologic subtypes, we computed odds ratios for total NNAL, PheT, and cotinine using logistic regression to adjust for potential confounders.

RESULTS

Individual associations of age, smoking duration, and total NNAL with lung cancer risk were statistically significant. After adjustment, total NNAL was the only biomarker significantly associated with risk (odds ratio, 1.57 per unit SD increase; 95% confidence interval, 1.08-2.28). A similar statistically significant result was obtained for adenocarcinoma risk, but not for nonadenocarcinoma.

CONCLUSIONS

This first reporting of the effect of the prospectively measured tobacco-specific biomarker total NNAL, on risk of lung cancer in smokers provides insight into the etiology of smoking-related lung cancer and reinforces targeting NNK for cancer prevention.

Pubmed
Journal: Hypertension (Dallas, Tex. : 1979)
April/10/2014
Abstract

Signal regulatory protein-α (SIRPA/SIRPα) is a transmembrane protein that is expressed in various tissues, including the heart. Previous studies have demonstrated that SIRPA is involved in multiple biological processes, including macrophage multinucleation, skeletal muscle differentiation, neuronal survival, protection against diabetes mellitus, and negative regulation of immune cells. However, the role of SIRPA in cardiac hypertrophy remains unknown. To examine the role of SIRPA in pathological cardiac hypertrophy, we used SIRPA knockout mice and transgenic mice that overexpressed mouse SIRPA in the heart. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. We observed downregulation of SIRPA expression in dilated cardiomyopathy human hearts and in animal hearts after aortic banding surgery. Accordingly, SIRPA(-/-) mice displayed augmented cardiac hypertrophy, which was accompanied by increased cardiac fibrosis and reduced contractile function, as compared with SIRPA(+/+) mice 4 weeks after aortic banding. In contrast, transgenic mice with the cardiac-specific SIRPA overexpression exhibited the opposite phenotype in response to pressure overload. Likewise, SIRPA protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we revealed that SIRPA-mediated protection during cardiac hypertrophy involved inhibition of the Toll-like receptor 4/nuclear factor-κB signaling axis. Furthermore, we demonstrated that the disruption of Toll-like receptor 4 rescued the adverse effects of SIRPA deficiency on pressure overload-triggered cardiac remodeling. Thus, our results identify that SIRPA plays a protective role in cardiac hypertrophy through negative regulation of the Toll-like receptor 4/nuclear factor-κB pathway.

load more...