K Takahashi
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(6K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Bioinformatics (Oxford, England)
September/25/2003
Abstract
BACKGROUND
Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively.
RESULTS
We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others.
BACKGROUND
The specification of SBML Level 1 is freely available from http://www.sbml.org/
Publication
Journal: Arthritis and rheumatism
March/16/2013
Publication
Journal: Science (New York, N.Y.)
June/29/1997
Abstract
Extracellular levels of the excitatory neurotransmitter glutamate in the nervous system are maintained by transporters that actively remove glutamate from the extracellular space. Homozygous mice deficient in GLT-1, a widely distributed astrocytic glutamate transporter, show lethal spontaneous seizures and increased susceptibility to acute cortical injury. These effects can be attributed to elevated levels of residual glutamate in the brains of these mice.
Publication
Journal: Molecular cell
October/31/2001
Abstract
X chromosome-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspase-3, -7, and -9. Smac/DIABLO, an inhibitor of XIAP, is released from mitochondria upon receiving apoptotic stimuli and binds to the BIR2 and BIR3 domains of XIAP, thereby inhibiting its caspase-inhibitory activity. Here we report that a serine protease called HtrA2/Omi is released from mitochondria and inhibits the function of XIAP by direct binding in a similar way to Smac. Moreover, when overexpressed extramitochondrially, HtrA2 induces atypical cell death, which is neither accompanied by a significant increase in caspase activity nor inhibited by caspase inhibitors, including XIAP. A catalytically inactive mutant of HtrA2, however, does not induce cell death. In short, HtrA2 is a Smac-like inhibitor of IAP activity with a serine protease-dependent cell death-inducing activity.
Publication
Journal: The Journal of membrane biology
November/10/1974
Publication
Journal: Nature
November/4/1998
Abstract
We have shown previously that chromosome VI of Saccharomyces cerevisiae contains nine origins of DNA replication that differ in initiation frequency and replicate sequentially during the S phase of the cell cycle. Here we show that there are links between activation of these multiple origins and regulation of S-phase progression. We study the effects of a DNA-damaging agent, methyl methane sulphonate (MMS), and of mutations in checkpoint genes such as rad53 on the activity of origins, measured by two-dimensional gel analysis, and on cell-cycle progression, measured by fluorescence-activated cell sorting. We find that when MMS slows down S-phase progression it also selectively blocks initiation from late origins. A rad53 mutation enhances late and/or inefficient origins and releases the initiation block by MMS. Mutation of rad53 also results in a late origin becoming early replicating. We conclude that rad53 regulates the timing of initiation of replication from late origins during normal cell growth and blocks initiation from late origins in MMS-treated cells. rad53 is, therefore, involved in the cell's surveillance of S-phase progression. We also find that orc2, which encodes subunit 2 of the origin-recognition complex, is involved in suppression of late origins.
Publication
Journal: Science (New York, N.Y.)
July/12/2000
Abstract
Mammalian kinetochores contain the centromere-specific histone H3 variant CENP-A, whose incorporation into limited chromosomal regions may be important for centromere function and chromosome segregation during mitosis. However, regulation of CENP-A localization and its role have not been clear. Here we report that the fission yeast homolog SpCENP-A is essential for establishing centromere chromatin associated with equal chromosome segregation. SpCENP-A binding to the nonrepetitious inner centromeres depended on Mis6, an essential centromere connector protein acting during G1-S phase of the cell cycle. Mis6 is likely required for recruiting SpCENP-A to form proper connection of sister centromeres.
Publication
Journal: The Journal of general physiology
September/19/2001
Abstract
The effects of various divalent cations in the external solution upon the Ca spike of the barnacle muscle fiber membrane were studied using intracellular recording and polarizing techniques. Analysis of the maximum rate of rise of the spike potential indicates that different species of divalent cations bind the same membrane sites competitively with different dissociation constants. The overshoot of the spike potential is determined by the density of Ca (Sr) ions in the membrane sites while the threshold membrane potential for spike initiation depends on the total density of divalent cations. The order of binding among different divalent and trivalent cations is the following: La+++, UO2++>> Zn++, Co++, Fe++>> Mn++>> Ni++>> Ca++>> Mg++, Sr++.
Publication
Journal: The Journal of cell biology
May/31/1999
Abstract
We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").
Publication
Journal: Molecular biology of the cell
October/6/1992
Abstract
Fission yeast centromeres vary in size but are organized in a similar fashion. Each consists of two distinct domains, namely, the approximately 15-kilobase (kb) central region (cnt+imr), containing chromosome-specific low copy number sequences, and 20- to 100-kb outer surrounding sequences (otr) with highly repetitive motifs common to all centromeres. The central region consists of an inner asymmetric sequence flanked by inverted repeats that exhibit strict identity with each other. Nucleotide changes in the left repeat are always accompanied with the same changes in the right. The chromatin structure of the central region is unusual. A nucleosomal nuclease digestion pattern formed on unstable plasmids but not on stable chromosome. DNase I hypersensitive sites correlate with the location of tRNA genes in the central region. Autonomously replicating sequences are also present in the central region. The behavior of truncated minichromosomes suggested that the central region is essential, but not sufficient, to confer transmission stability. A portion of the outer repetitive region is also required. A larger outer region is necessary to ensure correct meiotic behavior. Fluorescence in situ hybridization identified individual cens. In the interphase, they cluster near the nuclear periphery. The central sequence (cnt+imr) may play a role in positioning individual chromosomes within the nucleus, whereas the outer regions (otr) may interact with each other to form the higher-order complex structure.
Publication
Journal: Nature cell biology
February/28/2001
Abstract
Although cAMP is well known to regulate exocytosis in many secretory cells, its direct target in the exocytotic machinery is not known. Here we show that cAMP-GEFII, a cAMP sensor, binds to Rim (Rab3-interacting molecule, Rab3 being a small G protein) and to a new isoform, Rim2, both of which are putative regulators of fusion of vesicles to the plasma membrane. We also show that cAMP-GEFII, through its interaction with Rim2, mediates cAMP-induced, Ca2+-dependent secretion that is not blocked by an inhibitor of cAMP-dependent protein kinase (PKA). Accordingly, cAMP-GEFII is a direct target of cAMP in regulated exocytosis and is responsible for cAMP-dependent, PKA-independent exocytosis.
Publication
Journal: Annals of neurology
July/23/1996
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects the brains of a majority of patients with the acquired immunodeficiency syndrome (AIDS), and has been linked to the development of a progressive dementia termed "HIV-associated dementia." This disorder results in severe cognitive, behavioral, and motor deficits. Despite this neurological dysfunction, HIV-1 infection of brain cells does not occur significantly in neurons, astrocytes, or oligodendrocytes, but is restricted to brain macrophages and microglia. To identify possible low-level or latent infection of other brain cells, we combined the techniques of the polymerase chain reaction with in situ hybridization for the detection of HIV DNA, and used immunocytochemistry to identify the HIV-expressing cells. In the 21 adult brains studied (15 AIDS and 6 seronegative control brains), we found that polymerase chain reaction/in situ hybridization was both sensitive and specific for identifying HIV-infected cells. In all brains, the majority of infected cells were macrophages and microglia. In several brains, however, a substantial minority of cells harboring HIV DNA were identified as astrocytes. Neurons, oligodendrocytes, and endothelial cells were not infected with HIV, even in cases with HIV-associated dementia. These findings confirm previous data regarding the importance of macrophage/microglial infection, and essentially exclude neuronal infection in pathogenetic models of HIV-associated neurological disease. These data also demonstrate that latent or low-level infection of astrocytes occurs in AIDS, a finding that may be of importance in understanding HIV neuropathogenesis.
Publication
Journal: Nature
February/11/1986
Abstract
The distance between the simian virus 40 early promoter elements has been altered by inserting either odd or even multiples of half a DNA turn. There are marked differences in the in vivo effects of these two types of insertions on initiation of transcription from this promoter.
Publication
Journal: Science (New York, N.Y.)
November/19/1985
Abstract
The 21-base pair repeat elements of the SV40 promoter contain six tandem copies of the GGGCGG hexanucleotide (GC-box), each of which can bind, with varying affinity, to the cellular transcription factor, Sp1. In vitro SV40 early RNA synthesis is mediated by interaction of Sp1 with GC-boxes I, II, and III, whereas transcription in the late direction is mediated by binding to GC-boxes III, V, and VI.
Publication
Journal: The Journal of biological chemistry
September/30/1997
Abstract
The Rho GDP dissociation inhibitor (GDI) forms a complex with the GDP-bound form of the Rho family small G proteins and inhibits their activation. The GDP-bound form complexed with Rho GDI is not activated by the GDP/GTP exchange factor for the Rho family members, suggesting the presence of another factor necessary for this activation. We have reported that the Rho subfamily members regulate the ezrin/radixin/moesin (ERM)-CD44 system, implicated in reorganization of actin filaments. Here we report that Rho GDI directly interacts with ERM, initiating the activation of the Rho subfamily members by reducing the Rho GDI activity. These results suggest that ERM as well as Rho GDI and the Rho GDP/GTP exchange factor are involved in the activation of the Rho subfamily members, which then regulate reorganization of actin filaments through the ERM system.
Publication
Journal: The EMBO journal
July/6/1997
Abstract
The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.
Publication
Journal: Biochemical and biophysical research communications
October/19/1989
Abstract
Amino acid sequences of four peptide fragments of human hepatocyte growth factor purified from the plasma of patients with fulminant hepatic failure were determined. Based on the amino acid sequence of one of the fragments, two oligodeoxyribonucleotide mixtures were synthesized and used to screen a human placenta cDNA library. On the screening, two overlapping cDNA clones for human hepatocyte growth factor were isolated and the nucleotide sequence of the cDNA was determined. The entire primary structure of the protein was deduced from the sequence. The protein consists of 728 amino acid residues, including a possible signal peptide at the N-terminus. The sequence revealed that the heavy and light chains which comprise the protein are encoded by the same mRNA and are produced from a common translation product by proteolytic processing.
Publication
Journal: The Journal of cell biology
July/4/1996
Abstract
Injury to stratified epithelia causes a strong induction of keratins 6 (K6) and 16 (K16) in post-mitotic keratinocytes located at the wound edge. We show that induction of K6 and K16 occurs within 6 h after injury to human epidermis. Their subsequent accumulation in keratinocytes correlates with the profound reorganization of keratin filaments from a pan-cytoplasmic distribution to one in which filaments are aggregated in a juxtanuclear location, opposite to the direction of cell migration. This filament reorganization coincides with additional cytoarchitectural changes and the onset of re-epithelialization after 18 h post-injury. By following the assembly of K6 and K16 in vitro and in cultured cells, we find that relative to K5 and K14, a well-characterized keratin pair that is constitutively expressed in epidermis, K6 and K16 polymerize into short 10-nm filaments that accumulate near the nucleus, a property arising from K16. Forced expression of human K16 in skin keratinocytes of transgenic mice causes a retraction of keratin filaments from the cell periphery, often in a polarized fashion. These results imply that K16 may not have a primary structural function akin to epidermal keratins. Rather, they suggest that in the context of epidermal wound healing, the function of K16 could be to promote a reorganization of the cytoplasmic array of keratin filaments, an event that precedes the onset of keratinocyte migration into the wound site.
Publication
Journal: EMBO reports
August/1/2001
Abstract
Recent progress in biological clock research has facilitated genetic analysis of circadian rhythm sleep disorders, such as delayed sleep phase syndrome (DSPS) and non-24-h sleep-wake syndrome (N-24). We analyzed the human period3 (hPer3) gene, one of the human homologs of the Drosophila clock-gene period (Per), as a possible candidate for rhythm disorder susceptibility. All of the coding exons in the hPer3 gene were screened for polymorphisms by a PCR-based strategy using genomic DNA samples from sleep disorder patients and control subjects. We identified six sequence variations with amino acid changes, of which five were common and predicted four haplotypes of the hPer3 gene. One of the haplotypes was significantly associated with DSPS (Bonferroni's corrected P = 0.037; odds ratio = 7.79; 95% CI 1.59-38.3) in our study population. Our results suggest that structural polymorphisms in the hPer3 gene may be implicated in the pathogenesis of DSPS.
Publication
Journal: The Journal of biological chemistry
January/24/1969
Publication
Journal: Cancer research
May/31/2000
Abstract
Vascular basement membrane is an important structural component of blood vessels and has been shown to interact with and modulate vascular endothelial behavior during angiogenesis. During the inductive phase of tumor angiogenesis, this membrane undergoes many degradative and structural changes and reorganizes to a native state around newly formed capillaries in the resolution phase. Such matrix changes are potentially associated with molecular modifications that include expression of matrix gene products coupled with conformational changes, which expose cryptic protein modules for interaction with the vascular endothelium. We speculate that these interactions provide important endogenous angiogenic and anti-angiogenic cues. In this report, we identify an important antiangiogenic vascular basement membrane-associated protein, the 26-kDa NC1 domain of the alpha1 chain of type IV collagen, termed arresten. Arresten was isolated from human placenta and produced as a recombinant molecule in Escherichia coli and 293 embryonic kidney cells. We demonstrate that arresten functions as an anti-angiogenic molecule by inhibiting endothelial cell proliferation, migration, tube formation, and Matrigel neovascularization. Arresten inhibits the growth of two human xenograft tumors in nude mice and the development of tumor metastases. Additionally, we show that the anti-angiogenic activity of arresten is potentially mediated via mechanisms involving cell surface proteoglycans and the alpha1beta1 integrin on endothelial cells. Collectively, our results suggest that arresten is a potent inhibitor of angiogenesis with a potential for therapeutic use.
Publication
Journal: Antimicrobial agents and chemotherapy
August/8/2002
Abstract
T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has been found to have potent and selective inhibitory activity against influenza virus. In an in vitro plaque reduction assay, T-705 showed potent inhibitory activity against influenza A, B, and C viruses, with 50% inhibitory concentrations (IC(50)s) of 0.013 to 0.48 microg/ml, while it showed no cytotoxicity at concentrations up to 1,000 microg/ml in Madin-Darby canine kidney cells. The selectivity index for influenza virus was more than 2,000. It was also active against a neuraminidase inhibitor-resistant virus and some amantadine-resistant viruses. T-705 showed weak activity against non-influenza virus RNA viruses, with the IC(50)s being higher for non-influenza virus RNA viruses than for influenza virus, and it had no activity against DNA viruses. Orally administered T-705 at 100 mg/kg of body weight/day (four times a day) for 5 days significantly reduced the mean pulmonary virus yields and the rate of mortality in mice infected with influenza virus A/PR/8/34 (3 x 10(2) PFU). These results suggest that T-705 may be a compound that is useful and highly selective against influenza virus infections and that has a mode of action different from those of commercially available drugs, such as amantadine, rimantadine, and neuraminidase inhibitors.
Publication
Journal: Bioinformatics (Oxford, England)
May/3/1999
Abstract
BACKGROUND
Genome sequencing projects and further systematic functional analyses of complete gene sets are producing an unprecedented mass of molecular information for a wide range of model organisms. This provides us with a detailed account of the cell with which we may begin to build models for simulating intracellular molecular processes to predict the dynamic behavior of living cells. Previous work in biochemical and genetic simulation has isolated well-characterized pathways for detailed analysis, but methods for building integrative models of the cell that incorporate gene regulation, metabolism and signaling have not been established. We, therefore, were motivated to develop a software environment for building such integrative models based on gene sets, and running simulations to conduct experiments in silico.
RESULTS
E-CELL, a modeling and simulation environment for biochemical and genetic processes, has been developed. The E-CELL system allows a user to define functions of proteins, protein-protein interactions, protein-DNA interactions, regulation of gene expression and other features of cellular metabolism, as a set of reaction rules. E-CELL simulates cell behavior by numerically integrating the differential equations described implicitly in these reaction rules. The user can observe, through a computer display, dynamic changes in concentrations of proteins, protein complexes and other chemical compounds in the cell. Using this software, we constructed a model of a hypothetical cell with only 127 genes sufficient for transcription, translation, energy production and phospholipid synthesis. Most of the genes are taken from Mycoplasma genitalium, the organism having the smallest known chromosome, whose complete 580 kb genome sequence was determined at TIGR in 1995. We discuss future applications of the E-CELL system with special respect to genome engineering.
BACKGROUND
The E-CELL software is available upon request.
BACKGROUND
The complete list of rules of the developed cell model with kinetic parameters can be obtained via our web site at: http://e-cell.org/.
Publication
Journal: Arthritis and rheumatism
June/6/2001
Abstract
OBJECTIVE
To elucidate the direct role of human T cells in the induction of osteoclastogenesis in rheumatoid arthritis (RA), by studying human monocytes and the pathogenetic roles of receptor activator of nuclear factor kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG).
METHODS
Synovial tissue obtained at total knee replacement was stained immunohistologically using anti-RANKL, CD3, and CD4 antibodies. Synovial fluid was obtained from patients with RA, osteoarthritis (OA), gout, or trauma. Concentrations of the soluble form of RANKL (sRANKL) and OPG in the synovial fluid were measured by enzyme-linked immunosorbent assay. Activated T cells from peripheral blood mononuclear cells (PBMC) of healthy volunteers were cultured with human monocytes from PBMC.
RESULTS
Immunostaining of the synovial tissue of RA patients demonstrated that RANKL-positive cells were detected in a subset of fibroblast-like synoviocytes and infiltrating mononuclear cells. Double immunostaining revealed that RANKL-positive cells were detected in a subset of CD3+ cells and CD4+ cells. An increased concentration of sRANKL and a decreased concentration of OPG were detected in synovial fluid from RA patients. The ratio of the concentration of sRANKL to that of OPG was significantly higher in synovial fluid of RA patients than in synovial fluid of patients with OA or gout. The activated T cells expressing RANKL induced osteoclastogenesis from autologous peripheral monocytes. The role of RANKL in this osteoclastogenetic process was confirmed by dose-dependent inhibition by OPG.
CONCLUSIONS
The present study is the first to demonstrate osteoclastogenesis using human-derived T cells and monocytes. In addition, the present findings suggest that excess production of RANKL by activated T cells increases the level of sRANKL in synovial fluid and may contribute to osteoclastic bone resorption in RA patients.
load more...