Jue Ruan
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(41)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Bioinformatics
January/13/2010
Abstract
CONCLUSIONS
The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
BACKGROUND
http://samtools.sourceforge.net.
Pulse
Views:
19
Posts:
No posts
Rating:
Not rated
Publication
Journal: Genome Research
January/6/2009
Abstract
New sequencing technologies promise a new era in the use of DNA sequence. However, some of these technologies produce very short reads, typically of a few tens of base pairs, and to use these reads effectively requires new algorithms and software. In particular, there is a major issue in efficiently aligning short reads to a reference genome and handling ambiguity or lack of accuracy in this alignment. Here we introduce the concept of mapping quality, a measure of the confidence that a read actually comes from the position it is aligned to by the mapping algorithm. We describe the software MAQ that can build assemblies by mapping shotgun short reads to a reference genome, using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human sample. MAQ makes full use of mate-pair information and estimates the error probability of each read alignment. Error probabilities are also derived for the final genotype calls, using a Bayesian statistical model that incorporates the mapping qualities, error probabilities from the raw sequence quality scores, sampling of the two haplotypes, and an empirical model for correlated errors at a site. Both read mapping and genotype calling are evaluated on simulated data and real data. MAQ is accurate, efficient, versatile, and user-friendly. It is freely available at http://maq.sourceforge.net.
Publication
Journal: Genome Research
April/12/2010
Abstract
Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
Publication
Journal: Nature
December/3/2008
Abstract
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.
Publication
Journal: Nature
March/2/2010
Abstract
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature Genetics
January/4/2010
Abstract
Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nucleic Acids Research
February/27/2006
Abstract
TreeFam is a database of phylogenetic trees of gene families found in animals. It aims to develop a curated resource that presents the accurate evolutionary history of all animal gene families, as well as reliable ortholog and paralog assignments. Curated families are being added progressively, based on seed alignments and trees in a similar fashion to Pfam. Release 1.1 of TreeFam contains curated trees for 690 families and automatically generated trees for another 11 646 families. These represent over 128 000 genes from nine fully sequenced animal genomes and over 45 000 other animal proteins from UniProt; approximately 40-85% of proteins encoded in the fully sequenced animal genomes are included in TreeFam. TreeFam is freely available at http://www.treefam.org and http://treefam.genomics.org.cn.
Publication
Journal: Nucleic Acids Research
March/16/2008
Abstract
TreeFam (http://www.treefam.org) was developed to provide curated phylogenetic trees for all animal gene families, as well as orthologue and paralogue assignments. Release 4.0 of TreeFam contains curated trees for 1314 families and automatically generated trees for another 14,351 families. We have expanded TreeFam to include 25 fully sequenced animal genomes, as well as four genomes from plant and fungal outgroup species. We have also introduced more accurate approaches for automatically grouping genes into families, for building phylogenetic trees, and for inferring orthologues and paralogues. The user interface for viewing phylogenetic trees and family information has been improved. Furthermore, a new perl API lets users easily extract data from the TreeFam mysql database.
Publication
Journal: Nature
January/4/2005
Abstract
We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms (SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds (a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines--in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases.
Publication
Journal: Nature
August/21/2018
Abstract
Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.
Publication
Journal: Nature Methods
December/10/2019
Abstract
Existing long-read assemblers require thousands of central processing unit hours to assemble a human genome and are being outpaced by sequencing technologies in terms of both throughput and cost. We developed a long-read assembler wtdbg2 (https://github.com/ruanjue/wtdbg2) that is 2-17 times as fast as published tools while achieving comparable contiguity and accuracy. It paves the way for population-scale long-read assembly in future.
Publication
Journal: Nature Biotechnology
August/13/2019
Abstract
The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of short-read sequencing to detect small variants and structural variants. We estimate that 2,434 discordances are correctable mistakes in the 'genome in a bottle' (GIAB) benchmark set. Nearly all (99.64%) variants can be phased into haplotypes, further improving variant detection. De novo genome assembly using CCS reads alone produced a contiguous and accurate genome with a contig N50 of >15 megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads.
Publication
Journal: Nucleic Acids Research
April/14/2005
Abstract
The Silkworm Knowledgebase (SilkDB) is a web-based repository for the curation, integration and study of silkworm genetic and genomic data. With the recent accomplishment of a approximately 6X draft genome sequence of the domestic silkworm (Bombyx mori), SilkDB provides an integrated representation of the large-scale, genome-wide sequence assembly, cDNAs, clusters of expressed sequence tags (ESTs), transposable elements (TEs), mutants, single nucleotide polymorphisms (SNPs) and functional annotations of genes with assignments to InterPro domains and Gene Ontology (GO) terms. SilkDB also hosts a set of ESTs from Bombyx mandarina, a wild progenitor of B.mori, and a collection of genes from other Lepidoptera. Comparative analysis results between the domestic and wild silkworm, between B.mori and other Lepidoptera, and between B.mori and the two sequenced insects, fruitfly and mosquito, are displayed by using B.mori genome sequence as a reference framework. Designed as a basic platform, SilkDB strives to provide a comprehensive knowledgebase about the silkworm and present the silkworm genome and related information in systematic and graphical ways for the convenience of in-depth comparative studies. SilkDB is publicly accessible at http://silkworm.genomics.org.cn.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
October/2/2011
Abstract
We present the analysis of the evolution of tumors in a case of hepatocellular carcinoma. This case is particularly informative about cancer growth dynamics and the underlying driving mutations. We sampled nine different sections from three tumors and seven more sections from the adjacent nontumor tissues. Selected sections were subjected to exon as well as whole-genome sequencing. Putative somatic mutations were then individually validated across all 9 tumor and 7 nontumor sections. Among the mutations validated, 24 were amino acid changes; in addition, 22 large indels/copy number variants (>1 Mb) were detected. These somatic mutations define four evolutionary lineages among tumor cells. Separate evolution and expansion of these lineages were recent and rapid, each apparently having only one lineage-specific protein-coding mutation. Hence, by using a cell-population genetic definition, this approach identified three coding changes (CCNG1, P62, and an indel/fusion gene) as tumor driver mutations. These three mutations, affecting cell cycle control and apoptosis, are functionally distinct from mutations that accumulated earlier, many of which are involved in inflammation/immunity or cell anchoring. These distinct functions of mutations at different stages may reflect the genetic interactions underlying tumor growth.
Publication
Journal: Scientific Reports
February/19/2017
Abstract
The highly anticipated transition from next generation sequencing (NGS) to third generation sequencing (3GS) has been difficult primarily due to high error rates and excessive sequencing cost. The high error rates make the assembly of long erroneous reads of large genomes challenging because existing software solutions are often overwhelmed by error correction tasks. Here we report a hybrid assembly approach that simultaneously utilizes NGS and 3GS data to address both issues. We gain advantages from three general and basic design principles: (i) Compact representation of the long reads leads to efficient alignments. (ii) Base-level errors can be skipped; structural errors need to be detected and corrected. (iii) Structurally correct 3GS reads are assembled and polished. In our implementation, preassembled NGS contigs are used to derive the compact representation of the long reads, motivating an algorithmic conversion from a de Bruijn graph to an overlap graph, the two major assembly paradigms. Moreover, since NGS and 3GS data can compensate for each other, our hybrid assembly approach reduces both of their sequencing requirements. Experiments show that our software is able to assemble mammalian-sized genomes orders of magnitude more quickly than existing methods without consuming a lot of memory, while saving about half of the sequencing cost.
Publication
Journal: BMC Genomics
September/11/2012
Abstract
BACKGROUND
Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility.
METHODS
We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold.
RESULTS
We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome.
CONCLUSIONS
Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.
Publication
Journal: Nature Communications
January/21/2019
Abstract
Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering ~1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (>23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture.
Publication
Journal: Nucleic Acids Research
April/14/2005
Abstract
Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DNA from domestic breeds. Using the Red Jungle Fowl genome sequence as a reference, we identified 3.1 million non-redundant DNA sequence variants. To facilitate the application of our data to avian genetics and to provide a foundation for functional and evolutionary studies, we created the 'Chicken Variation Database' (ChickVD). A graphical MapView shows variants mapped onto the chicken genome in the context of gene annotations and other features, including genetic markers, trait loci, cDNAs, chicken orthologs of human disease genes and raw sequence traces. ChickVD also stores information on quantitative trait loci using data from collaborating institutions and public resources. Our data can be queried by search engine and homology-based BLAST searches. ChickVD is publicly accessible at http://chicken.genomics.org.cn.
Publication
Journal: Nature Genetics
September/6/2017
Abstract
The snub-nosed monkey genus Rhinopithecus includes five closely related species distributed across altitudinal gradients from 800 to 4,500 m. Rhinopithecus bieti, Rhinopithecus roxellana, and Rhinopithecus strykeri inhabit high-altitude habitats, whereas Rhinopithecus brelichi and Rhinopithecus avunculus inhabit lowland regions. We report the de novo whole-genome sequence of R. bieti and genomic sequences for the four other species. Eight shared substitutions were found in six genes related to lung function, DNA repair, and angiogenesis in the high-altitude snub-nosed monkeys. Functional assays showed that the high-altitude variant of CDT1 (Ala537Val) renders cells more resistant to UV irradiation, and the high-altitude variants of RNASE4 (Asn89Lys and Thr128Ile) confer enhanced ability to induce endothelial tube formation in vitro. Genomic scans in the R. bieti and R. roxellana populations identified signatures of selection between and within populations at genes involved in functions relevant to high-altitude adaptation. These results provide valuable insights into the adaptation to high altitude in the snub-nosed monkeys.
Publication
Journal: Biotechnology for Biofuels
September/22/2014
Abstract
BACKGROUND
The lipid content of microalgae is regarded as an important indicator for biodiesel. Many attempts have been made to increase the lipid content of microalgae through biochemical and genetic engineering. Significant lipid accumulation in microalgae has been achieved using biochemical engineering, such as nitrogen starvation, but the cell growth was severely limited. However, enrichment of lipid content in microalgae by genetic engineering is anticipated. In this study, GmDof4 from soybean (Glycine max), a transcription factor affecting the lipid content in Arabidopsis, was transferred into Chlorella ellipsoidea. We then investigated the molecular mechanism underlying the enhancement of the lipid content of transformed C. ellipsoidea.
RESULTS
We constructed a plant expression vector, pGmDof4, and transformed GmDof4 into C. ellipsoidea by electroporation. The resulting expression of GmDof4 significantly enhanced the lipid content by 46.4 to 52.9%, but did not affect the growth rate of the host cells under mixotrophic culture conditions. Transcriptome profiles indicated that 1,076 transcripts were differentially regulated: of these, 754 genes were significantly upregulated and 322 genes were significantly downregulated in the transgenic strains under mixotrophic culture conditions. There are 22 significantly regulated genes (|log2 ratio| >1) involved in lipid and fatty acid metabolism. Quantitative real-time PCR and an enzyme activity assay revealed that GmDof4 significantly up-regulated the gene expression and enzyme activity of acetyl-coenzyme A carboxylase, a key enzyme for fatty acid synthesis, in transgenic C. ellipsoidea cells.
CONCLUSIONS
The hetero-expression of a transcription factor GmDof4 gene from soybean can significantly increase the lipid content but not affect the growth rate of C. ellipsoidea under mixotrophic culture conditions. The increase in lipid content could be attributed to the large number of genes with regulated expression. In particular, the acetyl-coenzyme A carboxylase gene expression and enzyme activity were significantly upregulated in the transgenic cells. Our research provides a new way to increase the lipid content of microalgae by introducing a specific transcription factor to microalgae strains that can be used for the biofuel and food industries.
Publication
Journal: Bioinformatics
June/19/2013
Abstract
BACKGROUND
The innovation of restriction-site associated DNA sequencing (RAD-seq) method takes full advantage of next-generation sequencing technology. By clustering paired-end short reads into groups with their own unique tags, RAD-seq assembly problem is divided into subproblems. Fast and accurately clustering and assembling millions of RAD-seq reads with sequencing errors, different levels of heterozygosity and repetitive sequences is a challenging question.
RESULTS
Rainbow is developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq. First, Rainbow clusters reads using a spaced seed method. Then, Rainbow implements a heterozygote calling like strategy to divide potential groups into haplotypes in a top-down manner. And along a guided tree, it iteratively merges sibling leaves in a bottom-up manner if they are similar enough. Here, the similarity is defined by comparing the 2nd reads of a RAD segment. This approach tries to collapse heterozygote while discriminate repetitive sequences. At last, Rainbow uses a greedy algorithm to locally assemble merged reads into contigs. Rainbow not only outputs the optimal but also suboptimal assembly results. Based on simulation and a real guppy RAD-seq data, we show that Rainbow is more competent than the other tools in dealing with RAD-seq data.
BACKGROUND
Source code in C, Rainbow is freely available at http://sourceforge.net/projects/bio-rainbow/files/
Publication
Journal: Nature Methods
June/19/2017
Abstract
We present novoBreak, a genome-wide local assembly algorithm that discovers somatic and germline structural variation breakpoints in whole-genome sequencing data. novoBreak consistently outperformed existing algorithms on real cancer genome data and on synthetic tumors in the ICGC-TCGA DREAM 8.5 Somatic Mutation Calling Challenge primarily because it more effectively utilized reads spanning breakpoints. novoBreak also demonstrated great sensitivity in identifying short insertions and deletions.
Publication
Journal: GigaScience
June/19/2019
Abstract
Accurate and complete reference genome assemblies are fundamental for biological research. Cucumber is an important vegetable crop and model system for sex determination and vascular biology. Low-coverage Sanger sequences and high-coverage short Illumina sequences have been used to assemble draft cucumber genomes, but the incompleteness and low quality of these genomes limit their use in comparative genomics and genetic research. A high-quality and complete cucumber genome assembly is therefore essential.We assembled single-molecule real-time (SMRT) long reads to generate an improved cucumber reference genome. This version contains 174 contigs with a total length of 226.2 Mb and an N50 of 8.9 Mb, and provides 29.0 Mb more sequence data than previous versions. Using 10X Genomics and high-throughput chromosome conformation capture (Hi-C) data, 89 contigs (∼211.0 Mb) were directly linked into 7 pseudo-chromosome sequences. The newly assembled regions show much higher guanine-cytosine or adenine-thymine content than found previously, which is likely to have been inaccessible to Illumina sequencing. The new assembly contains 1,374 full-length long terminal retrotransposons and 1,078 novel genes including 239 tandemly duplicated genes. For example, we found 4 tandemly duplicated tyrosylprotein sulfotransferases, in contrast to the single copy of the gene found previously and in most other plants.This high-quality genome presents novel features of the cucumber genome and will serve as a valuable resource for genetic research in cucumber and plant comparative genomics.
Publication
Journal: BMC Genomics
December/14/2014
Abstract
BACKGROUND
Usually, next generation sequencing (NGS) technology has the property of ultra-high throughput but the read length is remarkably short compared to conventional Sanger sequencing. Paired-end NGS could computationally extend the read length but with a lot of practical inconvenience because of the inherent gaps. Now that Illumina paired-end sequencing has the ability of read both ends from 600 bp or even 800 bp DNA fragments, how to fill in the gaps between paired ends to produce accurate long reads is intriguing but challenging.
RESULTS
We have developed a new technology, referred to as pseudo-Sanger (PS) sequencing. It tries to fill in the gaps between paired ends and could generate near error-free sequences equivalent to the conventional Sanger reads in length but with the high throughput of the Next Generation Sequencing. The major novelty of PS method lies on that the gap filling is based on local assembly of paired-end reads which have overlaps with at either end. Thus, we are able to fill in the gaps in repetitive genomic region correctly. The PS sequencing starts with short reads from NGS platforms, using a series of paired-end libraries of stepwise decreasing insert sizes. A computational method is introduced to transform these special paired-end reads into long and near error-free PS sequences, which correspond in length to those with the largest insert sizes. The PS construction has 3 advantages over untransformed reads: gap filling, error correction and heterozygote tolerance. Among the many applications of the PS construction is de novo genome assembly, which we tested in this study. Assembly of PS reads from a non-isogenic strain of Drosophila melanogaster yields an N50 contig of 190 kb, a 5 fold improvement over the existing de novo assembly methods and a 3 fold advantage over the assembly of long reads from 454 sequencing.
CONCLUSIONS
Our method generated near error-free long reads from NGS paired-end sequencing. We demonstrated that de novo assembly could benefit a lot from these Sanger-like reads. Besides, the characteristic of the long reads could be applied to such applications as structural variations detection and metagenomics.
load more...