Jun Li
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(7K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of clinical oncology : official journal of the American Society of Clinical Oncology
May/5/2013
Abstract
OBJECTIVE
This study aimed to establish an effective prognostic nomogram for intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy.
METHODS
The nomogram was based on a retrospectively study on 367 patients who underwent partial hepatectomy for ICC at the Eastern Hepatobiliary Surgery Hospital from 2002 to 2007. The predictive accuracy and discriminative ability of the nomogram were determined by concordance index (C-index) and calibration curve and compared with five currently used staging systems on ICC. The results were validated using bootstrap resampling and a prospective study on 82 patients operated on from 2007 to 2008 at the same institution.
RESULTS
On multivariate analysis of the primary cohort, independent factors for survival were serum carcinoembryonic antigen, CA 19-9, tumor diameter and number, vascular invasion, lymph node metastasis, direct invasion, and local extrahepatic metastasis, which were all selected into the nomogram. The calibration curve for probability of survival showed good agreement between prediction by nomogram and actual observation. The C-index of the nomogram for predicting survival was 0.74 (95% CI, 0.71 to 0.77), which was statistically higher than the C-index values of the following systems: American Joint Committee on Cancer (AJCC) seventh edition (0.65), AJCC sixth edition (0.65), Nathan (0.64), Liver Cancer Study Group of Japan (0.64), and Okabayashi (0.67; P < .001 for all). It was also higher (0.74) in predicting survival for the mass-forming type of ICC (P < .001). In the validation cohort, the nomogram discrimination was superior to the five other staging systems (C-index: 0.75 v 0.60 to 0.63; P < .001 for all).
CONCLUSIONS
The proposed nomogram resulted in more-accurate prognostic prediction for patients with ICC after partial hepatectomy.
Publication
Journal: Nature medicine
November/3/2015
Abstract
We carried out metagenomic shotgun sequencing and a metagenome-wide association study (MGWAS) of fecal, dental and salivary samples from a cohort of individuals with rheumatoid arthritis (RA) and healthy controls. Concordance was observed between the gut and oral microbiomes, suggesting overlap in the abundance and function of species at different body sites. Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially resolved after RA treatment. Alterations in the gut, dental or saliva microbiome distinguished individuals with RA from healthy controls, were correlated with clinical measures and could be used to stratify individuals on the basis of their response to therapy. In particular, Haemophilus spp. were depleted in individuals with RA at all three sites and negatively correlated with levels of serum autoantibodies, whereas Lactobacillus salivarius was over-represented in individuals with RA at all three sites and was present in increased amounts in cases of very active RA. Functionally, the redox environment, transport and metabolism of iron, sulfur, zinc and arginine were altered in the microbiota of individuals with RA. Molecular mimicry of human antigens related to RA was also detectable. Our results establish specific alterations in the gut and oral microbiomes in individuals with RA and suggest potential ways of using microbiome composition for prognosis and diagnosis.
Publication
Journal: The New England journal of medicine
January/18/2016
Abstract
BACKGROUND
Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist.
METHODS
We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis.
RESULTS
Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH).
CONCLUSIONS
Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).
Publication
Journal: Journal of immunology (Baltimore, Md. : 1950)
November/5/2007
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in preterm infants and is characterized by translocation of LPS across the inflamed intestine. We hypothesized that the LPS receptor (TLR4) plays a critical role in NEC development, and we sought to determine the mechanisms involved. We now demonstrate that NEC in mice and humans is associated with increased expression of TLR4 in the intestinal mucosa and that physiological stressors associated with NEC development, namely, exposure to LPS and hypoxia, sensitize the murine intestinal epithelium to LPS through up-regulation of TLR4. In support of a critical role for TLR4 in NEC development, TLR4-mutant C3H/HeJ mice were protected from the development of NEC compared with wild-type C3H/HeOUJ littermates. TLR4 activation in vitro led to increased enterocyte apoptosis and reduced enterocyte migration and proliferation, suggesting a role for TLR4 in intestinal repair. In support of this possibility, increased NEC severity in C3H/HeOUJ mice resulted from increased enterocyte apoptosis and reduced enterocyte restitution and proliferation after mucosal injury compared with mutant mice. TLR4 signaling also led to increased serine phosphorylation of intestinal focal adhesion kinase (FAK). Remarkably, TLR4 coimmunoprecipitated with FAK, and small interfering RNA-mediated FAK inhibition restored enterocyte migration after TLR4 activation, demonstrating that the FAK-TLR4 association regulates intestinal healing. These findings demonstrate a critical role for TLR4 in the development of NEC through effects on enterocyte injury and repair, identify a novel TLR4-FAK association in regulating enterocyte migration, and suggest TLR4/FAK as a therapeutic target in this disease.
Publication
Journal: Nature
January/4/2005
Abstract
We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms (SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds (a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines--in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases.
Publication
Journal: Science (New York, N.Y.)
May/14/2006
Abstract
We surveyed an Anopheles gambiae population in a West African malaria transmission zone for naturally occurring genetic loci that control mosquito infection with the human malaria parasite, Plasmodium falciparum. The strongest Plasmodium resistance loci cluster in a small region of chromosome 2L and each locus explains at least 89% of parasite-free mosquitoes in independent pedigrees. Together, the clustered loci form a genomic Plasmodium-resistance island that explains most of the genetic variation for malaria parasite infection of mosquitoes in nature. Among the candidate genes in this chromosome region, RNA interference knockdown assays confirm a role in Plasmodium resistance for Anopheles Plasmodium-responsive leucine-rich repeat 1 (APL1), encoding a leucine-rich repeat protein that is similar to molecules involved in natural pathogen resistance mechanisms in plants and mammals.
Publication
Journal: Clinical cancer research : an official journal of the American Association for Cancer Research
August/27/2008
Abstract
OBJECTIVE
The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer.
METHODS
The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations.
RESULTS
Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer.
CONCLUSIONS
Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
Publication
Journal: Statistical methods in medical research
May/18/2014
Abstract
We discuss the identification of features that are associated with an outcome in RNA-Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes the form of counts, so models based on the normal distribution are generally unsuitable. The problem is especially challenging because different sequencing experiments may generate quite different total numbers of reads, or 'sequencing depths'. Existing methods for this problem are based on Poisson or negative binomial models: they are useful but can be heavily influenced by 'outliers' in the data. We introduce a simple, non-parametric method with resampling to account for the different sequencing depths. The new method is more robust than parametric methods. It can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We compare our proposed method to Poisson and negative binomial-based methods in simulated and real data sets, and find that our method discovers more consistent patterns than competing methods.
Publication
Journal: Nature immunology
September/12/2010
Abstract
Teleost fish are the most primitive bony vertebrates that contain immunoglobulins. In contrast to mammals and birds, these species are devoid of immunoglobulin A (IgA) or a functional equivalent. This observation suggests that specialization of immunoglobulin isotypes into mucosal and systemic responses took place during tetrapod evolution. Challenging that paradigm, here we show that IgT, an immunoglobulin isotype of unknown function, acts like a mucosal antibody. We detected responses of rainbow trout IgT to an intestinal parasite only in the gut, whereas IgM responses were confined to the serum. IgT coated most intestinal bacteria. As IgT and IgA are phylogenetically distant immunoglobulins, their specialization into mucosal responses probably occurred independently by a process of convergent evolution.
Publication
Journal: Cancer letters
March/24/2014
Abstract
Recent advances in non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack of coding protein function, termed long noncoding RNAs (lncRNAs). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNAs world. Moreover, accumulating studies have demonstrated that a class of lncRNAs are dysregulated in hepatocellular carcinoma(HCC) and closely related with tumorigenesis, metastasis, prognosis or diagnosis. In this review, we will briefly discuss the regulation and functional role of lncRNAs in HCC, therefore evaluating the potential of lncRNAs as prospective novel therapeutic targets in HCC.
Publication
Journal: Nature medicine
October/20/2008
Abstract
Increased lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA(2) is a causative agent. Here we show that selective inhibition of Lp-PLA(2) with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA(2) activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA(2) inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and stroke.
Publication
Journal: Lancet (London, England)
July/28/2014
Abstract
BACKGROUND
China scaled up a tuberculosis control programme (based on the directly observed treatment, short-course [DOTS] strategy) to cover half the population during the 1990s, and to the entire population after 2000. We assessed the effect of the programme.
METHODS
In this longitudinal analysis, we compared data from three national tuberculosis prevalence surveys done in 1990, 2000, and 2010. The 2010 survey screened 252,940 eligible individuals aged 15 years and older at 176 investigation points, chosen by stratified random sampling from all 31 mainland provinces. All individuals had chest radiographs taken. Those with abnormal radiographs, persistent cough, or both, were classified as having suspected tuberculosis. Tuberculosis was diagnosed by chest radiograph, sputum-smear microscopy, and culture. Trained staff interviewed each patient with tuberculosis. The 1990 and 2000 surveys were reanalysed and compared with the 2010 survey.
RESULTS
From 1990 to 2010, the prevalence of smear-positive tuberculosis decreased from 170 cases (95% CI 166-174) to 59 cases (49-72) per 100,000 population. During the 1990s, smear-positive prevalence fell only in the provinces with the DOTS programme; after 2000, prevalence decreased in all provinces. The percentage reduction in smear-positive prevalence was greater for the decade after 2000 than the decade before (57% vs 19%; p<0.0001). 70% of the total reduction in smear-positive prevalence (78 of 111 cases per 100,000 population) occurred after 2000. Of these cases, 68 (87%) were in known cases-ie, cases diagnosed with tuberculosis before the survey. Of the known cases, the proportion treated by the public health system (using the DOTS strategy) increased from 59 (15%) of 370 cases in 2000 to 79 (66%) of 123 cases in 2010, contributing to reduced proportions of treatment default (from 163 [43%] of 370 cases to 35 [22%] of 123 cases) and retreatment cases (from 312 [84%] of 374 cases to 48 [31%] of 137 cases; both p<0.0001).
CONCLUSIONS
In 20 years, China more than halved its tuberculosis prevalence. Marked improvement in tuberculosis treatment, driven by a major shift in treatment from hospitals to the public health centres (that implemented the DOTS strategy) was largely responsible for this epidemiological effect.
BACKGROUND
Chinese Ministry of Health.
Publication
Journal: Journal of immunology (Baltimore, Md. : 1950)
May/3/2010
Abstract
The role of immune responses in tumor development is a central issue for tumor biology and immunology. IL-17 is an important cytokine for inflammatory and autoimmune diseases. Although IL-17-producing cells are detected in cancer patients and tumor-bearing mice, the role of IL-17 in tumor development is controversial, and mechanisms remain to be fully elucidated. In the current study, we found that the development of tumors was inhibited in IL-17R-deficient mice. A defect in IFN-gammaR increased tumor growth, whereas tumor growth was inhibited in mice that were deficient in both IL-17R and IFN-gammaR compared with wild-type animals. Further experiments showed that neutralization of IL-17 by Abs inhibited tumor growth in wild-type mice, whereas systemic administration of IL-17 promoted tumor growth. The IL-17R deficiency increased CD8 T cell infiltration, whereas it reduced the infiltration of myeloid-derived suppressor cells (MDSCs) in tumors. In contrast, administration of IL-17 inhibited CD8 T cell infiltration and increased MDSCs in tumors. Further analysis indicated that IL-17 was required for the development and tumor-promoting activity of MDSCs in tumor-bearing mice. These data demonstrate that IL-17-mediated responses promote tumor development through the induction of tumor-promoting microenvironments at tumor sites. IL-17-mediated regulation of MDSCs is a primary mechanism for its tumor-promoting effects. The study provides novel insights into the role of IL-17 in tumor development and has major implications for targeting IL-17 in treatment of tumors.
Publication
Journal: Nature communications
October/26/2015
Abstract
Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumours. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase protein arrays to analyse 3,467 patient samples from 11 TCGA 'Pan-Cancer' diseases, using 181 high-quality antibodies that target 128 total proteins and 53 post-translationally modified proteins. The resultant proteomic data are integrated with genomic and transcriptomic analyses of the same samples to identify commonalities, differences, emergent pathways and network biology within and across tumour lineages. In addition, tissue-specific signals are reduced computationally to enhance biomarker and target discovery spanning multiple tumour lineages. This integrative analysis, with an emphasis on pathways and potentially actionable proteins, provides a framework for determining the prognostic, predictive and therapeutic relevance of the functional proteome.
Publication
Journal: The Plant cell
November/28/2006
Abstract
Retroposition is widely found to play essential roles in origination of new mammalian and other animal genes. However, the scarcity of retrogenes in plants has led to the assumption that plant genomes rarely evolve new gene duplicates by retroposition, despite abundant retrotransposons in plants and a reported long terminal repeat (LTR) retrotransposon-mediated mechanism of retroposing cellular genes in maize (Zea mays). We show extensive retropositions in the rice (Oryza sativa) genome, with 1235 identified primary retrogenes. We identified 27 of these primary retrogenes within LTR retrotransposons, confirming a previously observed role of retroelements in generating plant retrogenes. Substitution analyses revealed that the vast majority are subject to negative selection, suggesting, along with expression data and evidence of age, that they are likely functional retrogenes. In addition, 42% of these retrosequences have recruited new exons from flanking regions, generating a large number of chimerical genes. We also identified young chimerical genes, suggesting that gene origination through retroposition is ongoing, with a rate an order of magnitude higher than the rate in primates. Finally, we observed that retropositions have followed an unexpected spatial pattern in which functional retrogenes avoid centromeric regions, while retropseudogenes are randomly distributed. These observations suggest that retroposition is an important mechanism that governs gene evolution in rice and other grass species.
Publication
Journal: Science (New York, N.Y.)
January/24/2012
Abstract
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.
Publication
Journal: Biological psychiatry
March/7/2004
Abstract
There are major concerns that specific agonal conditions, including coma and hypoxia, might affect ribonucleic acid (RNA) integrity in postmortem brain studies. We report that agonal factors significantly affect RNA integrity and have a major impact on gene expression profiles in microarrays. In contrast to agonal factors, gender, age, and postmortem factors have less effect on gene expression profiles. The Average Correlation Index is proposed as a method for evaluating RNA integrity on the basis of similarity of microarray profiles. Reducing the variance due to agonal factors is critical in investigating small but validated gene expression differences in messenger RNA levels between psychiatric patients and control subjects.
Publication
Journal: Genome biology
September/28/2010
Abstract
After mapping, RNA-Seq data can be summarized by a sequence of read counts commonly modeled as Poisson variables with constant rates along each transcript, which actually fit data poorly. We suggest using variable rates for different positions, and propose two models to predict these rates based on local sequences. These models explain more than 50% of the variations and can lead to improved estimates of gene and isoform expressions for both Illumina and Applied Biosystems data.
Publication
Journal: Cellular signalling
August/17/2014
Abstract
Monocytes/macrophages are heterogeneous and versatile cells that could undergo their phenotypically/functionally dynamic switch in response to the microenvironment signals. Two major macrophage subpopulations with different functions which represent extreme of a continuum in a universe of activation states, including classically activated/inflammatory (M1) and alternatively activated/regenerative (M2) macrophages, have long been recognized. Emerging evidence through genetic or pharmacologic approaches has now been made in defining the actual fate in vivo and in vitro underlying M1 or M2-like polarized activation under physiological and pathological conditions. These cells are characterized by their expression of cell surface markers, secreted cytokines and chemokines, and transcription and epigenetic pathways. Here in this review, we shed new light on the contribution of several major signaling pathways and their modulators/targets involved in directing the macrophage plasticity and polarized function, assess the mechanisms of macrophage polarization by interacting endogenous cellular mechanisms and molecules associated with reciprocal skewing of macrophage polarization between the M1 and M2 states. The identification of mechanisms underlying functional polarization of macrophages into M1 or M2 cells might provide new insights into a basis for macrophage-centered diagnostic and therapeutic strategies for multiple diseases.
Publication
Journal: Journal of immunology (Baltimore, Md. : 1950)
April/27/2006
Abstract
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis, although the mechanisms by which bacterial translocation occurs remain largely unknown. We hypothesized that bacterial translocation across the intact barrier occurs after internalization of the bacteria by enterocytes in a process resembling phagocytosis and that TLR4 is required for this process. We now show that FcgammaRIIa-transfected enterocytes can internalize IgG-opsonized erythrocytes into actin-rich cups, confirming that these enterocytes have the molecular machinery required for phagocytosis. We further show that enterocytes can internalize Escherichia coli into phagosomes, that the bacteria remain viable intracellularly, and that TLR4 is required for this process to occur. TLR4 signaling was found to be necessary and sufficient for phagocytosis by epithelial cells, because IEC-6 intestinal epithelial cells were able to internalize LPS-coated, but not uncoated, latex particles and because MD2/TLR4-transfected human endothelial kidney (HEK)-293 cells acquired the capacity to internalize E. coli, whereas nontransfected HEK-293 cells and HEK-293 cells transfected with dominant-negative TLR4 bearing a P712H mutation did not. LPS did not induce membrane ruffling or macropinocytosis in enterocytes, excluding their role in bacterial internalization. Strikingly, the internalization of Gram-negative bacteria into enterocytes in vivo and the translocation of bacteria across the intestinal epithelium to mesenteric lymph nodes were significantly greater in wild-type mice as compared with mice having mutations in TLR4. These data suggest a novel mechanism by which bacterial translocation occurs and suggest a critical role for TLR4 in the phagocytosis of bacteria by enterocytes in this process.
Publication
Journal: Genes & development
February/25/2009
Abstract
Intermittent administration of PTH stimulates bone formation, but the precise mechanisms responsible for PTH responses in osteoblasts are only incompletely understood. Here we show that binding of PTH to its receptor PTH1R induced association of LRP6, a coreceptor of Wnt, with PTH1R. The formation of the ternary complex containing PTH, PTH1R, and LRP6 promoted rapid phosphorylation of LRP6, which resulted in the recruitment of axin to LRP6, and stabilization of beta-catenin. Activation of PKA is essential for PTH-induced beta-catenin stabilization, but not for Wnt signaling. In vivo studies confirmed that PTH treatment led to phosphorylation of LRP6 and an increase in amount of beta-catenin in osteoblasts with a concurrent increase in bone formation in rat. Thus, LRP6 coreceptor is a key element of the PTH signaling that regulates osteoblast activity.
Publication
Journal: Cancer research
January/3/2016
Abstract
Long noncoding RNAs (lncRNA) have emerged as essential players in cancer biology. Using recent large-scale RNA-seq datasets, especially those from The Cancer Genome Atlas (TCGA), we have developed "The Atlas of Noncoding RNAs in Cancer" (TANRIC; http://bioinformatics.mdanderson.org/main/TANRIC:Overview), a user-friendly, open-access web resource for interactive exploration of lncRNAs in cancer. It characterizes the expression profiles of lncRNAs in large patient cohorts of 20 cancer types, including TCGA and independent datasets >>8,000 samples overall). TANRIC enables researchers to rapidly and intuitively analyze lncRNAs of interest (annotated lncRNAs or any user-defined ones) in the context of clinical and other molecular data, both within and across tumor types. Using TANRIC, we have identified a large number of lncRNAs with potential biomedical significance, many of which show strong correlations with established therapeutic targets and biomarkers across tumor types or with drug sensitivity across cell lines. TANRIC represents a valuable tool for investigating the function and clinical relevance of lncRNAs in cancer, greatly facilitating lncRNA-related biologic discoveries and clinical applications.
Publication
Journal: Clinical microbiology reviews
April/13/2003
Abstract
Echinococcosis is a cosmopolitan zoonosis caused by adult or larval stages of cestodes belonging to the genus Echinococcus (family Taeniidae). The two major species of medical and public health importance are Echinococcus granulosus and E. multilocularis, which cause cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. Both CE and AE are both serious diseases, the latter especially so, with a high fatality rate and poor prognosis if managed inappropriately. This review discusses new concepts and approaches in the immunology and diagnosis of CE, but comparative reference has also been made to AE infection and to earlier pivotal studies of both diseases. The review considers immunity to infection in the intermediate and definitive hosts, innate resistance, evasion of the immune system, and vaccination of intermediate and definitive hosts, and it particularly emphasizes procedures for diagnosis of CE and AE, including the value of immunodiagnostic approaches. There is also discussion of the new advances in recombinant and related DNA technologies, especially application of PCR, that are providing powerful tools in the fields of vaccinology and molecular diagnosis of echinococcosis.
Publication
Journal: FASEB journal : official publication of the Federation of American Societies for Experimental Biology
October/4/2006
Abstract
Embryonic stem (ES) cells possess the ability to renew themselves while maintaining the capacity to differentiate into virtually all cell types of the body. Current evidence suggests that ES cells maintain their pluripotent state by expressing a battery of transcription factors including Oct4 and Nanog. However, little is known about how ES cells maintain the expression of these pluripotent factors in ES cells. Here we present evidence that Oct4, Nanog, and FoxD3 form a negative feedback loop to maintain their expression in pluripotent ES cells. First, Oct4 maintains Nanog activity by directly activating its promoter at sub-steady-state concentration but repressing it at or above steady-state levels. On the other hand, FoxD3 behaves as a positive activator of Nanog to counter the repressive effect of Oct4. The expression of Oct4 is activated by FoxD3 and Nanog but repressed by Oct4 itself, thus, exerting an important negative feedback loop to limit its own activity. Indeed, overexpression of either FoxD3 or Nanog in ES cells failed to increase the concentration of Oct4 beyond the steady-state concentration, whereas knocking down either FoxD3 or Nanog reduces the expression of Oct4 in ES cells. Finally, overexpression of Oct4 or Nanog failed to compensate the loss of Nanog or Oct4, respectively, suggesting that both are required for ES self-renewal and pluripotency. Our results suggest the FoxD3-Nanog-Oct4 loop anchors an interdependent network of transcription factors that regulate stem cell pluripotency.