J Cherry
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(43)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Genetics
June/11/2000
Publication
Journal: Science
March/29/2000
Abstract
The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
Publication
Journal: Nucleic Acids Research
January/19/2004
Abstract
The Gene Ontology (GO) project (http://www. geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.
Publication
Journal: Science
March/29/2000
Abstract
A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
Publication
Journal: Nucleic Acids Research
February/17/1998
Abstract
The Saccharomyces Genome Database (SGD) provides Internet access to the complete Saccharomyces cerevisiae genomic sequence, its genes and their products, the phenotypes of its mutants, and the literature supporting these data. The amount of information and the number of features provided by SGD have increased greatly following the release of the S.cerevisiae genomic sequence, which is currently the only complete sequence of a eukaryotic genome. SGD aids researchers by providing not only basic information, but also tools such as sequence similarity searching that lead to detailed information about features of the genome and relationships between genes. SGD presents information using a variety of user-friendly, dynamically created graphical displays illustrating physical, genetic and sequence feature maps. SGD can be accessed via the World Wide Web at http://genome-www.stanford.edu/Saccharomyces/
Publication
Journal: Nucleic Acids Research
May/12/2013
Abstract
The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources.
Publication
Journal: Nature
June/11/1997
Abstract
Genetic and physical maps for the 16 chromosomes of Saccharomyces cerevisiae are presented. The genetic map is the result of 40 years of genetic analysis. The physical map was produced from the results of an international systematic sequencing effort. The data for the maps are accessible electronically from the Saccharomyces Genome Database (SGD: http://genome-www.stanford. edu/Saccharomyces/).
Publication
Journal: Nucleic Acids Research
February/7/2001
Abstract
The Stanford Microarray Database (SMD) stores raw and normalized data from microarray experiments, and provides web interfaces for researchers to retrieve, analyze and visualize their data. The two immediate goals for SMD are to serve as a storage site for microarray data from ongoing research at Stanford University, and to facilitate the public dissemination of that data once published, or released by the researcher. Of paramount importance is the connection of microarray data with the biological data that pertains to the DNA deposited on the microarray (genes, clones etc.). SMD makes use of many public resources to connect expression information to the relevant biology, including SGD [Ball,C.A., Dolinski,K., Dwight,S.S., Harris,M.A., Issel-Tarver,L., Kasarskis,A., Scafe,C.R., Sherlock,G., Binkley,G., Jin,H. et al. (2000) Nucleic Acids Res., 28, 77-80], YPD and WormPD [Costanzo,M.C., Hogan,J.D., Cusick,M.E., Davis,B.P., Fancher,A.M., Hodges,P.E., Kondu,P., Lengieza,C., Lew-Smith,J.E., Lingner,C. et al. (2000) Nucleic Acids Res., 28, 73-76], Unigene [Wheeler,D.L., Chappey,C., Lash,A.E., Leipe,D.D., Madden,T.L., Schuler,G.D., Tatusova,T.A. and Rapp,B.A. (2000) Nucleic Acids Res., 28, 10-14], dbEST [Boguski,M.S., Lowe,T.M. and Tolstoshev,C.M. (1993) Nature Genet., 4, 332-333] and SWISS-PROT [Bairoch,A. and Apweiler,R. (2000) Nucleic Acids Res., 28, 45-48] and can be accessed at http://genome-www.stanford.edu/microarray.
Publication
Journal: Science
December/23/1998
Abstract
Comparative analysis of predicted protein sequences encoded by the genomes of Caenorhabditis elegans and Saccharomyces cerevisiae suggests that most of the core biological functions are carried out by orthologous proteins (proteins of different species that can be traced back to a common ancestor) that occur in comparable numbers. The specialized processes of signal transduction and regulatory control that are unique to the multicellular worm appear to use novel proteins, many of which re-use conserved domains. Major expansion of the number of some of these domains seen in the worm may have contributed to the advent of multicellularity. The proteins conserved in yeast and worm are likely to have orthologs throughout eukaryotes; in contrast, the proteins unique to the worm may well define metazoans.
Publication
Journal: Science
November/8/1998
Abstract
Arabidopsis thaliana is a small plant in the mustard family that has become the model system of choice for research in plant biology. Significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of this simple angiosperm. The 120-megabase genome of Arabidopsis is organized into five chromosomes and contains an estimated 20,000 genes. More than 30 megabases of annotated genomic sequence has already been deposited in GenBank by a consortium of laboratories in Europe, Japan, and the United States. The entire genome is scheduled to be sequenced by the end of the year 2000. Reaching this milestone should enhance the value of Arabidopsis as a model for plant biology and the analysis of complex organisms in general.
Publication
Journal: Science
September/14/1997
Publication
Journal: Cell
February/10/1986
Abstract
The germ-line micronuclear genome of the ciliate Tetrahymena thermophila contains approximately 10(2) chromosome-internal blocks of tandemly repeated C4A2 sequences (mic C4A2). This repeated sequence is the telomeric sequence in the somatic macronucleus. Each of six cloned micC4A2 was found to be adjacent to a conserved 30 bp sequence, which we propose is the terminal inverted repeat of a family of DNA elements (the Tel-1 family). This 30 bp sequence contains a site for the infrequently cutting restriction enzyme Bst XI, which allows full-length Tel-1 elements to be cut out of the micronuclear genome. BAL 31 exonuclease digestion of Bst XI-cut micronuclear DNA showed the majority of micC4A2 blocks to be associated with the ends of the Tel-1 family. We propose that Tel-1 elements are transposable and suggest a novel mechanism to account for the origin of micC4A2, in which telomeric repeats are added to the ends of free linear forms of the transposable elements prior to reintegration.
Publication
Journal: Nucleic Acids Research
February/24/2000
Abstract
The Saccharomyces Genome Database (SGD) stores and organizes information about the nearly 6200 genes in the yeast genome. The information is organized around the 'locus page' and directs users to the detailed information they seek. SGD is endeavoring to integrate the existing information about yeast genes with the large volume of data generated by functional analyses that are beginning to appear in the literature and on web sites. New features will include searches of systematic analyses and Gene Summary Paragraphs that succinctly review the literature for each gene. In addition to current information, such as gene product and phenotype descriptions, the new locus page will also describe a gene product's cellular process, function and localization using a controlled vocabulary developed in collaboration with two other model organism databases. We describe these developments in SGD through the newly reorganized locus page. The SGD is accessible via the WWW at http://genome-www.stanford.edu/Saccharomyces/
Publication
Journal: Nucleic Acids Research
February/7/2001
Abstract
Upon the completion of the SACCHAROMYCES: cerevisiae genomic sequence in 1996 [Goffeau,A. et al. (1997) NATURE:, 387, 5], several creative and ambitious projects have been initiated to explore the functions of gene products or gene expression on a genome-wide scale. To help researchers take advantage of these projects, the SACCHAROMYCES: Genome Database (SGD) has created two new tools, Function Junction and Expression Connection. Together, the tools form a central resource for querying multiple large-scale analysis projects for data about individual genes. Function Junction provides information from diverse projects that shed light on the role a gene product plays in the cell, while Expression Connection delivers information produced by the ever-increasing number of microarray projects. WWW access to SGD is available at genome-www.stanford. edu/Saccharomyces/.
Publication
Journal: Cold Spring Harbor Symposia on Quantitative Biology
August/10/1983
Publication
Journal: Nucleic Acids Research
March/15/1999
Abstract
The Saccharomyces Genome Database (SGD) collects and organizes information about the molecular biology and genetics of the yeast Saccharomyces cerevisiae. The latest protein structure and comparison tools available at SGD are presented here. With the completion of the yeast sequence and the Caenorhabditis elegans sequence soon to follow, comparison of proteins from complete eukaryotic proteomes will be an extremely powerful way to learn more about a particular protein's structure, its function, and its relationships with other proteins. SGD can be accessed through the World Wide Web at http://genome-www.stanford.edu/Saccharomyces/
Publication
Journal: Journal of Molecular Biology
December/4/1990
Abstract
We have constructed all single base substitutions in almost all of the highly conserved residues of the Tetrahymena self-splicing intron. Mutation of highly conserved residues almost invariably leads to loss of enzymatic activity. In many cases, activity could be regained by making additional mutations that restored predicted base-pairings; these second site suppressors in general confirm the secondary structure derived from phylogenetic data. At several positions, our suppression data can be most readily explained by assuming non-Watson-Crick base-pairings. In addition to the requirements imposed by the secondary structure, the sequence of the intron is constrained by "negative interactions", the exclusion of particular nucleotide sequences that would form undesirable secondary structures. A comparison of genetic and phylogenetic data suggests sites that may be involved in tertiary structural interactions.
Publication
Journal: Investigative Ophthalmology and Visual Science
June/25/1991
Abstract
Herpes simplex virus (HSV) latency in sensory ganglion neurons is well documented, but the existence of extraneuronal corneal latency is less well defined. To investigate the possibility of extraneuronal latency during ocular HSV infection, corneal specimens from 18 patients with quiescent herpes simplex keratitis (HSK) were obtained at the time of keratoplasty. Polymerase chain reaction (PCR) amplification followed by southern blot hybridization with a radiolabeled oligonucleotide probe was done to detect the presence of HSV-1 genome in these human corneal samples. Two pairs of oligonucleotides from the region of the HSV thymidine kinase (TK) gene and the latency-associated transcript (LAT) gene were used as primers in the PCR amplification. The DNA sequences from either the TK or the LAT gene were identified in 15 of 18 HSK corneas (83%). These results demonstrate that the HSV genome was retained, at least in part, in human corneas during quiescent HSV infection, giving further support to the concept of corneal extraneuronal latency.
Publication
Journal: The American journal of physiology
February/20/1979
Abstract
A biplane cineradiographic technique was used to measure deformation of the myocardium as indicated by small lead spheres implanted into the anterior left ventricular wall of anesthetized dogs. Deformation was resolved into nine separate components for each of the epicardial, middle, and endocardial layers. The data illustrate the mechanical effect of myocardial fiber orientation and the ability of muscle layers to deform differentially. In order to present an overview of all the results, the implications of the deformation components are discussed first separately and then in a coordinated fashion.
Publication
Journal: Nature
June/11/1997
Abstract
The nucleotide sequence of the 948,061 base pairs of chromosome XVI has been determined, completing the sequence of the yeast genome. Chromosome XVI was the last yeast chromosome identified, and some of the genes mapped early to it, such as GAL4, PEP4 and RAD1 (ref. 2) have played important roles in the development of yeast biology. The architecture of this final chromosome seems to be typical of the large yeast chromosomes, and shows large duplications with other yeast chromosomes. Chromosome XVI contains 487 potential protein-encoding genes, 17 tRNA genes and two small nuclear RNA genes; 27% of the genes have significant similarities to human gene products, and 48% are new and of unknown biological function. Systematic efforts to explore gene function have begun.
Publication
Journal: Nature
June/11/1997
Abstract
Here we report the sequence of 569,202 base pairs of Saccharomyces cerevisiae chromosome V. Analysis of the sequence revealed a centromere, two telomeres and 271 open reading frames (ORFs) plus 13 tRNAs and four small nuclear RNAs. There are two Tyl transposable elements, each of which contains an ORF (included in the count of 271). Of the ORFs, 78 (29%) are new, 81 (30%) have potential homologues in the public databases, and 112 (41%) are previously characterized yeast genes.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/18/1997
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
May/27/1981
Abstract
A NADH-ferricyanide reductase of the external surface of intact mouse ascites tumor cells grown in culture was shown. The oxidation/reduction reaction was due to enzymatic rather than inorganic iron catalysis as demonstrated by the kinetics and specificity of the reaction. Activities of three markers for cytoplasmic contents were lacking with the intact tumor cells. The dehydrogenase activity was inhibited by p-chloromercuribenzoate, bathophenanthroline sulfonate, and the anticancer drug adriamycin. Sodium azide and potassium cyanide inhibited partially. The response to inhibitors resembled that of isolated plasma membranes rather than that of mitochondria. Concurrent with these findings, neither superoxide dismutase nor rotenone affected the redox activity. The findings provide evidence for the operation of a plasma membrane redox system at the surface of intact, living cells.
Publication
Journal: Trends in Genetics
October/4/1995
Authors
load more...