Wei Chen
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(7K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Genetics
August/12/2010
Abstract
Behçet's disease is a genetically complex disease of unknown etiology characterized by recurrent inflammatory attacks affecting the orogenital mucosa, eyes and skin. We performed a genome-wide association study with 311,459 SNPs in 1,215 individuals with Behçet's disease (cases) and 1,278 healthy controls from Turkey. We confirmed the known association of Behçet's disease with HLA-B*51 and identified a second, independent association within the MHC Class I region. We also identified an association at IL10 (rs1518111, P = 1.88 x 10(-8)). Using a meta-analysis with an additional five cohorts from Turkey, the Middle East, Europe and Asia, comprising a total of 2,430 cases and 2,660 controls, we identified associations at IL10 (rs1518111, P = 3.54 x 10(-18), odds ratio = 1.45, 95% CI 1.34-1.58) and the IL23R-IL12RB2 locus (rs924080, P = 6.69 x 10(-9), OR = 1.28, 95% CI 1.18-1.39). The disease-associated IL10 variant (the rs1518111 A allele) was associated with diminished mRNA expression and low protein production.
Publication
Journal: JAMA - Journal of the American Medical Association
November/17/2003
Abstract
BACKGROUND
Carotid artery intima-media thickness (IMT) is associated with cardiovascular risk factors and is recognized as an important predictive measure of clinical coronary atherosclerosis events in middle-aged and elderly populations. However, information on the association of carotid IMT in young adults with different risk factors measured in childhood, adulthood, or as a cumulative burden of each of the risk factors measured serially from childhood to adulthood is limited.
OBJECTIVE
To examine the association between carotid IMT in young adults and traditional cardiovascular risk factors measured since childhood.
METHODS
A cohort study of 486 adults aged 25 to 37 years from a semirural black and white community in Bogalusa, La (71% white, 39% men), who had at least 3 measurements of traditional risk factors since childhood, conducted between September 1973 and December 1996.
METHODS
Association of carotid IMT with risk factors, including systolic blood pressure, lipoprotein levels, and body mass index.
RESULTS
Male vs female (0.757 mm vs 0.719 mm) and black vs white (0.760 mm vs 0.723 mm) participants had increased carotid IMT (P<.001 for both). In multivariable analyses, significant predictors for being in top vs lower 3 quartiles of carotid IMT in young adults were childhood measures of low-density lipoprotein cholesterol (LDL-C) level (odds ratio [OR], 1.42, corresponding to 1-SD change specific for age, race, and sex; 95% confidence interval [CI], 1.14-1.78) and body mass index (BMI; OR, 1.25; 95% CI, 1.01-1.54); adulthood measures of LDL-C level (OR, 1.46; 95% CI, 1.16-1.82), high-density lipoprotein cholesterol (HDL-C) level (OR, 0.67; 95% CI, 0.51-0.88), and systolic blood pressure (OR, 1.36; 95% CI, 1.08-1.72); and long-term cumulative burden of LDL-C (OR, 1.58; 95% CI, 1.24-2.01) and HDL-C (OR, 0.75; 95% CI, 0.58-0.97) levels measured serially from childhood to adulthood. An increasing trend in carotid IMT across quartiles of LDL-C level measured in childhood was observed, with a mean value of 0.761 mm (95% CI, 0.743-0.780 mm) for those at the top quartile vs 0.724 mm (95% CI, 0.715-0.734 mm) for those in the lower 3 quartiles (P<.001).
CONCLUSIONS
Childhood measures of LDL-C level and BMI predict carotid IMT in young adults. The prevention implications of these findings remains to be explored.
Publication
Journal: Circulation Research
June/19/2014
Abstract
BACKGROUND
The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown.
OBJECTIVE
Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1).
RESULTS
Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators.
CONCLUSIONS
Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo.
Publication
Journal: Nature
December/11/2002
Abstract
Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Immunology
November/14/2004
Abstract
Plasmacytoid dendritic cells (PDCs) are key effectors in host innate immunity and orchestrate adaptive immune responses. CpG oligodeoxynucleotides (ODN) have potent immunostimulatory effects on PDCs through TLR9 recognition and signaling. Little is known about the effects of CpG ODN on human PDC-mediated T cell priming. Here we show that type B CpG ODN effectively promotes PDCs to prime allogeneic naive CD4(+)CD25(-) T cells to differentiate into CD4(+)CD25(+) regulatory T (Treg) cells. The CD4(+)CD25(+) T cells induced by CpG ODN-activated PDCs express forkhead transcription factor 3 and produce IL-10, TGF-beta, IFN-gamma, and IL-6, but low IL-2 and IL-4. These CD4(+)CD25(+) T cells are hyporesponsive to secondary alloantigen stimulation and strongly inhibit proliferation of autologous or allogeneic naive CD4(+) T cells in an Ag-nonspecific manner. CpG ODN-activated PDCs require direct contact with T cells to induce CD4(+)CD25(+) Treg cells. Interestingly, IL-10 and TGF-beta were undetectable in the supernatants of CpG ODN-stimulated PDC cultures. Both CpG-A and CpG-C ODN-activated PDCs similarly induced the generation of CD4(+)CD25(+) Treg cells with strong immune suppressive function. This study demonstrates that TLR9 stimulation can promote PDC-mediated generation of CD4(+)CD25(+) Treg cells and suggests PDCs may play an important role in the maintenance of immunological tolerance.
Publication
Journal: Nature Genetics
December/29/2010
Abstract
To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
Publication
Journal: Cell
January/10/2013
Abstract
Data on absolute molecule numbers will empower the modeling, understanding, and comparison of cellular functions and biological systems. We quantified transcriptomes and proteomes in fission yeast during cellular proliferation and quiescence. This rich resource provides the first comprehensive reference for all RNA and most protein concentrations in a eukaryote under two key physiological conditions. The integrated data set supports quantitative biology and affords unique insights into cell regulation. Although mRNAs are typically expressed in a narrow range above 1 copy/cell, most long, noncoding RNAs, except for a distinct subset, are tightly repressed below 1 copy/cell. Cell-cycle-regulated transcription tunes mRNA numbers to phase-specific requirements but can also bring about more switch-like expression. Proteins greatly exceed mRNAs in abundance and dynamic range, and concentrations are regulated to functional demands. Upon transition to quiescence, the proteome changes substantially, but, in stark contrast to mRNAs, proteins do not uniformly decrease but scale with cell volume.
Publication
Journal: The Lancet Oncology
January/16/2014
Abstract
BACKGROUND
Current staging methods do not accurately predict the risk of disease recurrence and benefit of adjuvant chemotherapy for patients who have had surgery for stage II colon cancer. We postulated that expression patterns of multiple microRNAs (miRNAs) could, if combined into a single model, improve postoperative risk stratification and prediction of chemotherapy benefit for these patients.
METHODS
Using miRNA microarrays, we analysed 40 paired stage II colon cancer tumours and adjacent normal mucosa tissues, and identified 35 miRNAs that were differentially expressed between tumours and normal tissue. Using paraffin-embedded specimens from a further 138 patients with stage II colon cancer, we confirmed differential expression of these miRNAs using qRT-PCR. We then built a six-miRNA-based classifier using the LASSO Cox regression model, based on the association between the expression of every miRNA and the duration of individual patients' disease-free survival. We validated the prognostic and predictive accuracy of this classifier in both the internal testing group of 138 patients, and an external independent group of 460 patients.
RESULTS
Using the LASSO model, we built a classifier based on the six miRNAs: miR-21-5p, miR-20a-5p, miR-103a-3p, miR-106b-5p, miR-143-5p, and miR-215. Using this tool, we were able to classify patients between those at high risk of disease progression (high-risk group), and those at low risk of disease progression (low-risk group). Disease-free survival was significantly different between these groups in every set of patients. In the initial training group of patients, 5-year disease-free survival was 89% (95% CI 77·3-94·4) for the low-risk group, and 60% (46·3-71·0) for the high-risk group (hazard ratio [HR] 4·24, 95% CI 2·13-8·47; p<0·0001). In the internal testing set of patients, 5-year disease-free survival was 85% (95% CI 74·3-91·8) for the low-risk group, and 57% (42·8-68·5) for the high-risk group (HR 3·63, 1·86-7·01; p<0·0001), and in the independent validation set of patients, was 85% (79·6-89·0) for the low-risk group and 54% (46·4-61·1) for the high-risk group (HR 3·70, 2·56-5·35; p<0·0001). The six-miRNA-based classifier was an independent prognostic factor for, and had better prognostic value than, clinicopathological risk factors and mismatch repair status. In an ad-hoc analysis, the patients in the high-risk group were found to have a favourable response to adjuvant chemotherapy (HR 1·69, 1·17-2·45; p=0·0054). We developed two nomograms for clinical use that integrated the six-miRNA-based classifier and four clinicopathological risk factors to predict which patients might benefit from adjuvant chemotherapy after surgery for stage II colon cancer.
CONCLUSIONS
Our six-miRNA-based classifier is a reliable prognostic and predictive tool for disease recurrence in patients with stage II colon cancer, and might be able to predict which patients benefit from adjuvant chemotherapy. It might facilitate patient counselling and individualise management of patients with this disease.
BACKGROUND
Natural Science Foundation of China.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/27/2007
Abstract
Genetic variants at chromosomes 1q31-32 and 10q26 are strongly associated with susceptibility to age-related macular degeneration (AMD), a common blinding disease of the elderly. We demonstrate, by evaluating 45 tag SNPs spanning HTRA1, PLEKHA1, and predicted gene LOC387715/ARMS2, that rs10490924 SNP alone, or a variant in strong linkage disequilibrium, can explain the bulk of association between the 10q26 chromosomal region and AMD. A previously suggested causal SNP, rs11200638, and other examined SNPs in the region are only indirectly associated with the disease. Contrary to previous reports, we show that rs11200638 SNP has no significant impact on HTRA1 promoter activity in three different cell lines, and HTRA1 mRNA expression exhibits no significant change between control and AMD retinas. However, SNP rs10490924 shows the strongest association with AMD (P = 5.3 x 10(-30)), revealing an estimated relative risk of 2.66 for GT heterozygotes and 7.05 for TT homozygotes. The rs10490924 SNP results in nonsynonymous A69S alteration in the predicted protein LOC387715/ARMS2, which has a highly conserved ortholog in chimpanzee, but not in other vertebrate sequences. We demonstrate that LOC387715/ARMS2 mRNA is detected in the human retina and various cell lines and encodes a 12-kDa protein, which localizes to the mitochondrial outer membrane when expressed in mammalian cells. We propose that rs10490924 represents a major susceptibility variant for AMD at 10q26. A likely biological mechanism is that the A69S change in the LOC387715/ARMS2 protein affects its presumptive function in mitochondria.
Publication
Journal: Arthritis and rheumatism
December/8/2005
Abstract
OBJECTIVE
The main genetic risk factor for rheumatoid arthritis (RA), the HLA region, has been known for 25 years. Previous research has demonstrated, within the RA population, an association between HLA-DRB1 alleles carrying the shared epitope (SE) and antibodies directed against cyclic citrullinated peptides (anti-CCP antibodies). We undertook this study to make the first comparison of SE allele frequencies in the healthy population with those in RA patients who do or do not harbor anti-CCP antibodies.
METHODS
HLA-DRB1 typing was performed in 408 RA patients from the Leiden Early Arthritis Clinic (the Leiden EAC; a Dutch population-based inception cohort in which disease course was followed up over time), in 423 healthy Dutch controls, and in 720 affected members of 341 US multiplex (sibpair) families of Caucasian origin from the North American RA Consortium (NARAC) with well-established disease and fulfilling the American College of Rheumatology classification criteria for RA. The presence of anti-CCP antibodies was determined by enzyme-linked immunosorbent assay.
RESULTS
For the Leiden EAC, the odds ratio (OR) describing the association of 2 copies of the SE allele with anti-CCP positivity (using no copies of the SE allele in the healthy control group as the referent) was 11.79 (P < 0.0001), while the OR for 1 SE allele was 4.37 (P < 0.0001). No association with the SE was observed in the Dutch anti-CCP-negative RA patients. For the NARAC families, linkage and association analysis revealed the SE to be associated only with anti-CCP-positive disease and not with anti-CCP-negative disease. Stratified analyses indicated that anti-CCP antibodies primarily mediated association of the SE with joint damage or disease persistence.
CONCLUSIONS
HLA-DRB1 alleles encoding the SE are specific for disease characterized by antibodies to citrullinated peptides, indicating that these alleles do not associate with RA as such, but rather with a particular phenotype.
Publication
Journal: Journal of Immunology
October/20/2008
Abstract
Human plasmacytoid dendritic cells (PDCs) can drive naive, allogeneic CD4(+)CD25(-) T cells to differentiate into CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). However, the intracellular mechanism or mechanisms underlying PDC-induced Treg generation are unknown. In this study, we show that human PDCs express high levels of IDO, an intracellular enzyme that catabolizes tryptophan degradation. Triggering of TLR 9 with CpG oligodeoxynucleotides activates PDCs to up-regulate surface expression of B7 ligands and HLA-DR Ag, but also significantly increases the expression of IDO and results in the generation of inducible Tregs from CD4(+)CD25(-) T cells with potent suppressor cell function. Blocking IDO activity with the pharmacologic inhibitor 1-methyl-D-tryptophan significantly abrogates PDC-driven inducible Treg generation and suppressor cell function. Adding kynurenine, the immediate downstream metabolite of tryptophan, bypasses the 1-methyl-D-tryptophan effect and restores PDC-driven Treg generation. Our results demonstrate that the IDO pathway is essential for PDC-driven Treg generation from CD4(+)CD25(-) T cells and implicate the generation of kynurenine pathway metabolites as the critical mediator of this process.
Publication
Journal: Human Molecular Genetics
March/11/2008
Abstract
Copy number variations (CNVs) account for a substantial proportion of human genomic variation, and have been shown to cause neurodevelopmental disorders. We sought to determine the relevance of CNVs to the aetiology of schizophrenia (SZ). Whole-genome, high-resolution, tiling path BAC array comparative genomic hybridization (array CGH) was employed to test DNA from 93 individuals with DSM-IV SZ. Common DNA copy number changes that are unlikely to be directly pathogenic in SZ were filtered out by comparison to a reference dataset of 372 control individuals analyzed in our laboratory, and a screen against the Database of Genomic Variants. The remaining aberrations were validated with Affymetrix 250K SNP arrays or 244K Agilent oligo-arrays and tested for inheritance from the parents. A total of 13 aberrations satisfied our criteria. Two of them are very likely to be pathogenic. The first one is a deletion at 2p16.3 that was present in an affected sibling and disrupts NRXN1. The second one is a de novo duplication at 15q13.1 spanning APBA2. The proteins of these two genes interact directly and play a role in synaptic development and function. Both genes have been affected by CNVs in patients with autism and mental retardation, but neither has been previously implicated in SZ.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/23/2007
Abstract
Increased Aurora A expression occurs in a variety of human cancers and induces chromosomal abnormalities during mitosis associated with tumor initiation and progression. MLN8054 is a selective small-molecule Aurora A kinase inhibitor that has entered Phase I clinical trials for advanced solid tumors. MLN8054 inhibits recombinant Aurora A kinase activity in vitro and is selective for Aurora A over the family member Aurora B in cultured cells. MLN8054 treatment results in G(2)/M accumulation and spindle defects and inhibits proliferation in multiple cultured human tumor cells lines. Growth of human tumor xenografts in nude mice was dramatically inhibited after oral administration of MLN8054 at well tolerated doses. Moreover, the tumor growth inhibition was sustained after discontinuing MLN8054 treatment. In human tumor xenografts, MLN8054 induced mitotic accumulation and apoptosis, phenotypes consistent with inhibition of Aurora A. MLN8054 is a selective inhibitor of Aurora A kinase that robustly inhibits growth of human tumor xenografts and represents an attractive modality for therapeutic intervention of human cancers.
Publication
Journal: PLoS Genetics
November/12/2007
Abstract
We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken.
Publication
Journal: Cell
September/12/2007
Abstract
Mammalian models of longevity are related primarily to caloric restriction and alterations in metabolism. We examined mice in which type 5 adenylyl cyclase (AC5) is knocked out (AC5 KO) and which are resistant to cardiac stress and have increased median lifespan of approximately 30%. AC5 KO mice are protected from reduced bone density and susceptibility to fractures of aging. Old AC5 KO mice are also protected from aging-induced cardiomyopathy, e.g., hypertrophy, apoptosis, fibrosis, and reduced cardiac function. Using a proteomic-based approach, we demonstrate a significant activation of the Raf/MEK/ERK signaling pathway and upregulation of cell protective molecules, including superoxide dismutase. Fibroblasts isolated from AC5 KO mice exhibited ERK-dependent resistance to oxidative stress. These results suggest that AC is a fundamentally important mechanism regulating lifespan and stress resistance.
Publication
Journal: Journal of Clinical Oncology
November/12/2007
Abstract
OBJECTIVE
Evaluation of treatment effects in malignant brain tumors is challenging because of the lack of reliable response predictors of tumor response. This study examines the predictive value of positron emission tomography (PET) using [18F] fluorothymidine (FLT), an imaging biomarker of cell proliferation, in patients with recurrent malignant gliomas treated with bevacizumab in combination with irinotecan.
METHODS
Patients with recurrent malignant gliomas treated with biweekly cycles of bevacizumab and irinotecan were prospectively studied with FLT-PET at baseline, after 1 to 2 weeks, and after 6 weeks from start of treatment. A more than 25% reduction in tumor FLT uptake as measured by standardized uptake value was defined as a metabolic response. FLT responses were compared with response as shown by magnetic resonance imaging (MRI) and patient survival.
RESULTS
Twenty-one patients were included, and 19 were assessable for metabolic response evaluation with FLT-PET. There were nine responders (47%) and 10 nonresponders (53%). Metabolic responders survived three times as long as nonresponders (10.8 v 3.4 months; P = .003), and tended to have a prolonged progression-free survival (P = .061). Both early and later FLT-PET responses were more significant predictors of overall survival (1 to 2 weeks, P = .006; 6 weeks, P = .002), compared with the MRI responses (P = .060 for both 6-week and best responses).
CONCLUSIONS
FLT-PET as an imaging biomarker seems to be predictive of overall survival in bevacizumab and irinotecan treatment of recurrent gliomas. Whether FLT-PET performed as early as 1 to 2 week after starting treatment is as predictive as the study indicates at 6 weeks warrants further investigation.
Publication
Journal: Cell
July/2/2008
Abstract
Thioredoxin 1 (Trx1) facilitates the reduction of signaling molecules and transcription factors by cysteine thiol-disulfide exchange, thereby regulating cell growth and death. Here we studied the molecular mechanism by which Trx1 attenuates cardiac hypertrophy. Trx1 upregulates DnaJb5, a heat shock protein 40, and forms a multiple-protein complex with DnaJb5 and class II histone deacetylases (HDACs), master negative regulators of cardiac hypertrophy. Both Cys-274/Cys-276 in DnaJb5 and Cys-667/Cys-669 in HDAC4 are oxidized and form intramolecular disulfide bonds in response to reactive oxygen species (ROS)-generating hypertrophic stimuli, such as phenylephrine, whereas they are reduced by Trx1. Whereas reduction of Cys-274/Cys-276 in DnaJb5 is essential for interaction between DnaJb5 and HDAC4, reduction of Cys-667/Cys-669 in HDAC4 inhibits its nuclear export, independently of its phosphorylation status. Our study reveals a novel regulatory mechanism of cardiac hypertrophy through which the nucleocytoplasmic shuttling of class II HDACs is modulated by their redox modification in a Trx1-sensitive manner.
Publication
Journal: Molecular and Cellular Biology
April/3/2007
Abstract
Senescence is characterized by an irreversible cell proliferation arrest. Specialized domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), are thought to contribute to the irreversible cell cycle exit in many senescent cells by repressing the expression of proliferation-promoting genes such as cyclin A. SAHF contain known heterochromatin-forming proteins, such as heterochromatin protein 1 (HP1) and the histone H2A variant macroH2A, and other specialized chromatin proteins, such as HMGA proteins. Previously, we showed that a complex of histone chaperones, histone repressor A (HIRA) and antisilencing function 1a (ASF1a), plays a key role in the formation of SAHF. Here we have further dissected the series of events that contribute to SAHF formation. We show that each chromosome condenses into a single SAHF focus. Chromosome condensation depends on the ability of ASF1a to physically interact with its deposition substrate, histone H3, in addition to its cochaperone, HIRA. In cells entering senescence, HP1gamma, but not the related proteins HP1alpha and HP1beta, becomes phosphorylated on serine 93. This phosphorylation is required for efficient incorporation of HP1gamma into SAHF. Remarkably, however, a dramatic reduction in the amount of chromatin-bound HP1 proteins does not detectably affect chromosome condensation into SAHF. Moreover, abundant HP1 proteins are not required for the accumulation in SAHF of histone H3 methylated on lysine 9, the recruitment of macroH2A proteins, nor other hallmarks of senescence, such as the expression of senescence-associated beta-galactosidase activity and senescence-associated cell cycle exit. Based on our results, we propose a stepwise model for the formation of SAHF.
Publication
Journal: Journal of Nuclear Medicine
August/8/2005
Abstract
3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients.
METHODS
Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecutive days. Three stable patients in long-term remission were included as negative control subjects. Tracer kinetics in normal brain and tumor were measured. Uptake of (18)F-FLT and (18)F-FDG was quantified by the standardized uptake value (SUV) and the tumor-to-normal tissue (T/N) ratio. The accuracy of (18)F-FLT and (18)F-FDG PET in evaluating newly diagnosed and recurrent gliomas was compared. More than half of the patients underwent resection after the PET study and correlations between PET uptake and the Ki-67 proliferation index were examined. Patients were monitored for a mean of 15.4 mo (range, 12-20 mo). The predictive power of PET for tumor progression and survival was analyzed using Kaplan-Meier statistics.
RESULTS
(18)F-FLT uptake in tumors was rapid, peaking at 5-10 min after injection and remaining stable up to 75 min. Hence, a 30-min scan beginning at 5 min after injection was sufficient for imaging. (18)F-FLT visualized all high-grade (grade III or IV) tumors. Grade II tumor did not show appreciable (18)F-FLT uptake and neither did the stable lesions. The absolute uptake of (18)F-FLT was low (maximum-pixel SUV [SUV(max)], 1.33) but image contrast was better than with (18)F-FDG (T/N ratio, 3.85 vs. 1.49). (18)F-FDG PET studies were negative in 5 patients with recurrent high-grade glioma who subsequently suffered tumor progression within 1-3 mo. (18)F-FLT SUV(max) correlated more strongly with Ki-67 index (r = 0.84; P < 0.0001) than (18)F-FDG SUV(max) (r = 0.51; P = 0.07). (18)F-FLT uptake also had more significant predictive power with respect to tumor progression and survival (P = 0.0005 and P = 0.001, respectively).
CONCLUSIONS
Thirty-minute (18)F-FLT PET 5 min after injection was more sensitive than (18)F-FDG to image recurrent high-grade tumors, correlated better with Ki-67 values, and was a more powerful predictor of tumor progression and survival. Thus, (18)F-FLT appears to be a promising tracer as a surrogate marker of proliferation in high-grade gliomas.
Publication
Journal: The Lancet
July/28/2014
Abstract
BACKGROUND
China scaled up a tuberculosis control programme (based on the directly observed treatment, short-course [DOTS] strategy) to cover half the population during the 1990s, and to the entire population after 2000. We assessed the effect of the programme.
METHODS
In this longitudinal analysis, we compared data from three national tuberculosis prevalence surveys done in 1990, 2000, and 2010. The 2010 survey screened 252,940 eligible individuals aged 15 years and older at 176 investigation points, chosen by stratified random sampling from all 31 mainland provinces. All individuals had chest radiographs taken. Those with abnormal radiographs, persistent cough, or both, were classified as having suspected tuberculosis. Tuberculosis was diagnosed by chest radiograph, sputum-smear microscopy, and culture. Trained staff interviewed each patient with tuberculosis. The 1990 and 2000 surveys were reanalysed and compared with the 2010 survey.
RESULTS
From 1990 to 2010, the prevalence of smear-positive tuberculosis decreased from 170 cases (95% CI 166-174) to 59 cases (49-72) per 100,000 population. During the 1990s, smear-positive prevalence fell only in the provinces with the DOTS programme; after 2000, prevalence decreased in all provinces. The percentage reduction in smear-positive prevalence was greater for the decade after 2000 than the decade before (57% vs 19%; p<0.0001). 70% of the total reduction in smear-positive prevalence (78 of 111 cases per 100,000 population) occurred after 2000. Of these cases, 68 (87%) were in known cases-ie, cases diagnosed with tuberculosis before the survey. Of the known cases, the proportion treated by the public health system (using the DOTS strategy) increased from 59 (15%) of 370 cases in 2000 to 79 (66%) of 123 cases in 2010, contributing to reduced proportions of treatment default (from 163 [43%] of 370 cases to 35 [22%] of 123 cases) and retreatment cases (from 312 [84%] of 374 cases to 48 [31%] of 137 cases; both p<0.0001).
CONCLUSIONS
In 20 years, China more than halved its tuberculosis prevalence. Marked improvement in tuberculosis treatment, driven by a major shift in treatment from hospitals to the public health centres (that implemented the DOTS strategy) was largely responsible for this epidemiological effect.
BACKGROUND
Chinese Ministry of Health.
Publication
Journal: Science
September/21/2003
Abstract
Wnt proteins, regulators of development in many organisms, bind to seven transmembrane-spanning (7TMS) receptors called frizzleds, thereby recruiting the cytoplasmic molecule dishevelled (Dvl) to the plasma membrane.Frizzled-mediated endocytosis of Wg (a Drosophila Wnt protein) and lysosomal degradation may regulate the formation of morphogen gradients. Endocytosis of Frizzled 4 (Fz4) in human embryonic kidney 293 cells was dependent on added Wnt5A protein and was accomplished by the multifunctional adaptor protein beta-arrestin 2 (betaarr2), which was recruited to Fz4 by binding to phosphorylated Dvl2. These findings provide a previously unrecognized mechanism for receptor recruitment of beta-arrestin and demonstrate that Dvl plays an important role in the endocytosis of frizzled, as well as in promoting signaling.
Publication
Journal: Nature Immunology
November/22/2010
Abstract
After being activated by antigen, helper T lymphocytes switch from a resting state to clonal expansion. This switch requires inactivation of the transcription factor Foxo1, a suppressor of proliferation expressed in resting helper T lymphocytes. In the early antigen-dependent phase of expansion, Foxo1 is inactivated by antigen receptor-mediated post-translational modifications. Here we show that in the late phase of expansion, Foxo1 was no longer post-translationally regulated but was inhibited post-transcriptionally by the interleukin 2 (IL-2)-induced microRNA miR-182. Specific inhibition of miR-182 in helper T lymphocytes limited their population expansion in vitro and in vivo. Our results demonstrate a central role for miR-182 in the physiological regulation of IL-2-driven helper T cell-mediated immune responses and open new therapeutic possibilities.
Publication
Journal: BMC Genomics
July/16/2009
Abstract
BACKGROUND
Microarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by microarray design, its potential to estimate absolute transcript levels is unknown.
RESULTS
In this study, we evaluate relative accuracy of microarrays and transcriptome sequencing (RNA-Seq) using third methodology: proteomics. We find that RNA-Seq provides a better estimate of absolute expression levels.
CONCLUSIONS
Our result shows that in terms of overall technical performance, RNA-Seq is the technique of choice for studies that require accurate estimation of absolute transcript levels.
Publication
Journal: Nature Genetics
February/25/2008
Abstract
We identified and replicated an association between ITGAM (CD11b) at 16p11.2 and risk of systemic lupus erythematosus (SLE) in 3,818 individuals of European descent. The strongest association was at a nonsynonymous SNP, rs1143679 (P = 1.7 x 10(-17), odds ratio = 1.78). We further replicated this association in two independent samples of individuals of African descent (P = 0.0002 and 0.003; overall meta-analysis P = 6.9 x 10(-22)). The genetic association between ITGAM and SLE implicates the alpha(M)beta2-integrin adhesion pathway in disease development.
load more...