Wei Chen
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(7K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature
June/30/2011
Abstract
Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.
Publication
Journal: Autophagy
October/18/2016
Pulse
Views:
108
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
April/22/2002
Abstract
We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
Publication
Journal: Nucleic Acids Research
February/26/2012
Abstract
microRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate the expression of a large fraction of all animal genes and are important in a wide range of biological processes. Recent advances in high-throughput sequencing allow miRNA detection at unprecedented sensitivity, but the computational task of accurately identifying the miRNAs in the background of sequenced RNAs remains challenging. For this purpose, we have designed miRDeep2, a substantially improved algorithm which identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples. Analyzing data from seven animal species representing the major animal clades, miRDeep2 identified miRNAs with an accuracy of 98.6-99.9% and reported hundreds of novel miRNAs. To test the accuracy of miRDeep2, we knocked down the miRNA biogenesis pathway in a human cell line and sequenced small RNAs before and after. The vast majority of the >100 novel miRNAs expressed in this cell line were indeed specifically downregulated, validating most miRDeep2 predictions. Last, a new miRNA expression profiling routine, low time and memory usage and user-friendly interactive graphic output can make miRDeep2 useful to a wide range of researchers.
Publication
Journal: Nature Genetics
January/21/2008
Abstract
We have created a global map of the effects of polymorphism on gene expression in 400 children from families recruited through a proband with asthma. We genotyped 408,273 SNPs and identified expression quantitative trait loci from measurements of 54,675 transcripts representing 20,599 genes in Epstein-Barr virus-transformed lymphoblastoid cell lines. We found that 15,084 transcripts (28%) representing 6,660 genes had narrow-sense heritabilities (H2)>> 0.3. We executed genome-wide association scans for these traits and found peak lod scores between 3.68 and 59.1. The most highly heritable traits were markedly enriched in Gene Ontology descriptors for response to unfolded protein (chaperonins and heat shock proteins), regulation of progression through the cell cycle, RNA processing, DNA repair, immune responses and apoptosis. SNPs that regulate expression of these genes are candidates in the study of degenerative diseases, malignancy, infection and inflammation. We have created a downloadable database to facilitate use of our findings in the mapping of complex disease loci.
Publication
Journal: Nature Biotechnology
May/5/2008
Abstract
The capacity of highly parallel sequencing technologies to detect small RNAs at unprecedented depth suggests their value in systematically identifying microRNAs (miRNAs). However, the identification of miRNAs from the large pool of sequenced transcripts from a single deep sequencing run remains a major challenge. Here, we present an algorithm, miRDeep, which uses a probabilistic model of miRNA biogenesis to score compatibility of the position and frequency of sequenced RNA with the secondary structure of the miRNA precursor. We demonstrate its accuracy and robustness using published Caenorhabditis elegans data and data we generated by deep sequencing human and dog RNAs. miRDeep reports altogether approximately 230 previously unannotated miRNAs, of which four novel C. elegans miRNAs are validated by northern blot analysis.
Publication
Journal: Nature Genetics
April/22/2007
Abstract
Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors. We find that for such genes, both normal and malignant embryonic cells generally lack the hypermethylation of DNA found in adult cancers. In embryonic stem cells, these genes are held in a 'transcription-ready' state mediated by a 'bivalent' promoter chromatin pattern consisting of the repressive mark, histone H3 methylated at Lys27 (H3K27) by Polycomb group proteins, plus the active mark, methylated H3K4. However, embryonic carcinoma cells add two key repressive marks, dimethylated H3K9 and trimethylated H3K9, both associated with DNA hypermethylation in adult cancers. We hypothesize that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.
Publication
Journal: The Lancet
March/11/2012
Abstract
BACKGROUND
The prevalence of chronic kidney disease is high in developing countries. However, no national survey of chronic kidney disease has been done incorporating both estimated glomerular filtration rate (eGFR) and albuminuria in a developing country with the economic diversity of China. We aimed to measure the prevalence of chronic kidney disease in China with such a survey.
METHODS
We did a cross-sectional survey of a nationally representative sample of Chinese adults. Chronic kidney disease was defined as eGFR less than 60 mL/min per 1·73 m(2) or the presence of albuminuria. Participants completed a lifestyle and medical history questionnaire and had their blood pressure measured, and blood and urine samples taken. Serum creatinine was measured and used to estimate glomerular filtration rate. Urinary albumin and creatinine were tested to assess albuminuria. The crude and adjusted prevalence of indicators of kidney damage were calculated and factors associated with the presence of chronic kidney disease analysed by logistic regression.
RESULTS
50,550 people were invited to participate, of whom 47,204 agreed. The adjusted prevalence of eGFR less than 60 mL/min per 1·73 m(2) was 1·7% (95% CI 1·5-1·9) and of albuminuria was 9·4% (8·9-10·0). The overall prevalence of chronic kidney disease was 10·8% (10·2-11·3); therefore the number of patients with chronic kidney disease in China is estimated to be about 119·5 million (112·9-125·0 million). In rural areas, economic development was independently associated with the presence of albuminuria. The prevalence of chronic kidney disease was high in north (16·9% [15·1-18·7]) and southwest (18·3% [16·4-20·4]) regions compared with other regions. Other factors independently associated with kidney damage were age, sex, hypertension, diabetes, history of cardiovascular disease, hyperuricaemia, area of residence, and economic status.
CONCLUSIONS
Chronic kidney disease has become an important public health problem in China. Special attention should be paid to residents in economically improving rural areas and specific geographical regions in China.
BACKGROUND
The Ministry of Science and Technology (China); the Science and Technology Commission of Shanghai; the National Natural Science Foundation of China; the Department of Health, Jiangsu Province; the Sichuan Science and Technology Department; the Ministry of Education (China); the International Society of Nephrology Research Committee; and the China Health and Medical Development Foundation.
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: Genes and Development
June/10/2007
Abstract
Polycomb-repressive complex 2 (PRC2)-mediated histone methylation plays an important role in aberrant cancer gene silencing and is a potential target for cancer therapy. Here we show that S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep) induces efficient apoptotic cell death in cancer cells but not in normal cells. We found that DZNep effectively depleted cellular levels of PRC2 components EZH2, SUZ12, and EED and inhibited associated histone H3 Lys 27 methylation (but not H3 Lys 9 methylation). By integrating RNA interference (RNAi), genome-wide expression analysis, and chromatin immunoprecipitation (ChIP) studies, we have identified a prominent set of genes selectively repressed by PRC2 in breast cancer that can be reactivated by DZNep. We further demonstrate that the preferential reactivation of a set of these genes by DZNep, including a novel apoptosis affector, FBXO32, contributes to DZNep-induced apoptosis in breast cancer cells. Our results demonstrate the unique feature of DZNep as a novel chromatin remodeling compound and suggest that pharmacologic reversal of PRC2-mediated gene repression by DZNep may constitute a novel approach for cancer therapy.
Publication
Journal: Nature
February/11/2013
Abstract
Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.
load more...