Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(792)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Medicine
January/22/2003
Abstract
Aspirin (ASA) and dexamethasone (DEX) are widely used anti-inflammatory agents yet their mechanism(s) for blocking polymorphonuclear neutrophil (PMN) accumulation at sites of inflammation remains unclear. Here, we report that inhibition of PMN infiltration by ASA and DEX is a property shared by aspirin-triggered lipoxins (ATL) and the glucocorticoid-induced annexin 1 (ANXA1)-derived peptides that are both generated in vivo and act at the lipoxin A(4) receptor (ALXR/FPRL1) to halt PMN diapedesis. These structurally diverse ligands specifically interact directly with recombinant human ALXR demonstrated by specific radioligand binding and function as well as immunoprecipitation of PMN receptors. In addition, the combination of both ATL and ANXA1-derived peptides limited PMN infiltration and reduced production of inflammatory mediators (that is, prostaglandins and chemokines) in vivo. Together, these results indicate functional redundancies in endogenous lipid and peptide anti-inflammatory circuits that are spatially and temporally separate, where both ATL and specific ANXA1-derived peptides act in concert at ALXR to downregulate PMN recruitment to inflammatory loci.
Publication
Journal: Cell Stem Cell
September/4/2013
Abstract
The LRRK2 mutation G2019S is the most common genetic cause of Parkinson's disease (PD). To better understand the link between mutant LRRK2 and PD pathology, we derived induced pluripotent stem cells from PD patients harboring LRRK2 G2019S and then specifically corrected the mutant LRRK2 allele. We demonstrate that gene correction resulted in phenotypic rescue in differentiated neurons and uncovered expression changes associated with LRRK2 G2019S. We found that LRRK2 G2019S induced dysregulation of CPNE8, MAP7, UHRF2, ANXA1, and CADPS2. Knockdown experiments demonstrated that four of these genes contribute to dopaminergic neurodegeneration. LRRK2 G2019S induced increased extracellular-signal-regulated kinase 1/2 (ERK) phosphorylation. Transcriptional dysregulation of CADPS2, CPNE8, and UHRF2 was dependent on ERK activity. We show that multiple PD-associated phenotypes were ameliorated by inhibition of ERK. Therefore, our results provide mechanistic insight into the pathogenesis induced by mutant LRRK2 and pointers for the development of potential new therapeutics.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/30/2013
Abstract
Formyl-peptide receptor type 2 (FPR2), also called ALX (the lipoxin A4 receptor), conveys the proresolving properties of lipoxin A4 and annexin A1 (AnxA1) and the proinflammatory signals elicited by serum amyloid protein A and cathelicidins, among others. We tested here the hypothesis that ALX might exist as homo- or heterodimer with FPR1 or FPR3 (the two other family members) and operate in a ligand-biased fashion. Coimmunoprecipitation and bioluminescence resonance energy transfer assays with transfected HEK293 cells revealed constitutive dimerization of the receptors; significantly, AnxA1, but not serum amyloid protein A, could activate ALX homodimers. A p38/MAPK-activated protein kinase/heat shock protein 27 signaling signature was unveiled after AnxA1 application, leading to generation of IL-10, as measured in vitro (in primary monocytes) and in vivo (after i.p. injection in the mouse). The latter response was absent in mice lacking the ALX ortholog. Using a similar approach, ALX/FPR1 heterodimerization evoked using the panagonist peptide Ac2-26, identified a JNK-mediated proapoptotic path that was confirmed in primary neutrophils. These findings provide a molecular mechanism that accounts for the dual nature of ALX and indicate that agonist binding and dimerization state contribute to the conformational landscape of FPRs.
Publication
Journal: Oncogene
November/17/2008
Abstract
Suppression of annexin A1 (ANXA1), a mediator of apoptosis and inhibitor of cell proliferation, is well documented in various cancers but the underlying mechanism remains unknown. We investigated whether decreased ANXA1 expression was mediated by microRNAs (miRNAs), which are small, non-coding RNAs that negatively regulate gene expression. Using Sanger miRBase, we identified miR-584, miR-196a and miR-196b as potential miRNAs targeting ANXA1. Only miRNA-196a showed significant inverse correlation with ANXA1 mRNA levels in 12 cancer cell lines of esophageal, breast and endometrial origin (Pearson's correlation -0.66, P=0.019), identifying this as the candidate miRNA targeting ANXA1. Inverse correlation was also observed in 10 esophageal adenocarcinomas (Pearson's correlation -0.64, P=0.047). Analysis of paired normal/tumor tissues from additional 10 patients revealed an increase in miR-196a in the cancers (P=0.003), accompanied by a decrease in ANXA1 mRNA (P=0.004). Increasing miR-196a levels in cells by miR-196a mimics resulted in decreased ANXA1 mRNA and protein. In addition, miR-196a mimics inhibited luciferase expression in luciferase plasmid reporter that included predicted miR-196a recognition sequence from ANXA1 3'-untranslated region confirming that miR-196a directly targets ANXA1. miR-196a promoted cell proliferation, anchorage-independent growth and suppressed apoptosis, suggesting its oncogenic potential. This study demonstrated a novel mechanism of post-transcriptional regulation of ANXA1 expression and identified miR-196a as a marker of esophageal cancer.
Publication
Journal: Blood
October/29/2008
Abstract
Polymorphonuclear leukocyte (PMN)-derived microparticles display inhibitory properties on target cells as assessed in vitro; since PMNs contain abundant amounts of the endogenous anti-inflammatory protein annexin 1 (AnxA1), we tested here whether biologically active AnxA1 could be present in PMN-derived microparticles. PMN adhesion to human umbilical vein endothelial cell (HUVEC) monolayers led to the generation of microparticles that contained AnxA1, as detected by Western blotting, flow cytometry, and mass spectrometry analyses. Addition of these microparticles to recipient PMNs prior to flow over HUVEC monolayers significantly inhibited cell adhesion, an effect abrogated by a neutralizing anti-AnxA1 antibody, or an antibody raised against the AnxA1 receptor, that is termed lipoxin A(4) receptor or ALX. Intravenous delivery of human PMN-derived microparticles markedly inhibited PMN recruitment to an air pouch inflamed with IL-1beta. This anti-inflammatory effect was also dependent on endogenous AnxA1, since injection of microparticles produced from wild-type PMNs (bone marrow derived), but not from AnxA1-null PMNs, inhibited IL-1beta-induced leukocyte trafficking. In conclusion, PMN-derived microparticles contain functionally active AnxA1 that confers them anti-inflammatory properties; generation of these microparticles in the microcirculation could promote inflammatory resolution by time-dependent dampening of cell recruitment.
Publication
Journal: Journal of Clinical Investigation
March/10/2013
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Publication
Journal: Investigative Ophthalmology and Visual Science
January/28/2008
Abstract
OBJECTIVE
The authors studied retinal gene expression changes in rats after experimental intraocular pressure elevation and optic nerve transection to elucidate molecular mechanisms of retinal ganglion cell (RGC) death.
METHODS
Translimbal laser photocoagulation was used to induce unilateral IOP elevation in 41 albino Wistar rats. In 38 additional animals, unilateral transection of the optic nerve was performed. Retinas were harvested 1 day, 3 days, 1 week, 2 weeks, 4 weeks, and 8 weeks after each treatment, and total RNA was isolated. Pooled RNA from each time point was analyzed with rat genome arrays. Array results were confirmed by real-time PCR, and localization studies were performed using in situ hybridization for select genes.
RESULTS
Genes that were upregulated in glaucoma, but not after transection, included Cyclin D2, Stat1, Stat3, c-Fos, Junb, Anxa1, Anxa 3, and CCAAT/enhancer binding protein (Cebp-delta). In glaucoma and transection models, the upregulation of c-Jun, Activating transcription factor 3, Heat shock protein 27, and Timp1 were observed. Comparisons among microarray databases were performed between our data and reports of retinal and optic nerve injury models in mice, rats, and monkeys.
CONCLUSIONS
Gene expression changes specific to experimental glaucoma injury were identified. The present analysis supports the importance of neuroinflammation and the participation of the tumor necrosis factor alpha signaling pathway in glaucoma injury. The alterations observed include processes that are both protective of and detrimental to the survival of RGCs.
Publication
Journal: Inflammation Research
October/27/2004
Abstract
Annexin 1 (ANXA1) is the first characterized member of the annexin family of proteins able to bind (i.e. to annex) to cellular membranes in a calcium-dependent manner. ANXA1 may be induced by glucocorticoids in inflammatory cells and shares with these drugs many anti-inflammatory effects. Originally described as a phospholipase A2 (PLA2)-inhibitory protein, ANXA1 can affect many components of the inflammatory reaction besides the metabolism of arachidonic acid. Recent data have shown that ANXA1 may specifically target cytosolic PLA2 by both direct enzyme inhibition and suppression of cytokine-induced activation of the enzyme. ANXA1 inhibits the expression and/or activity of other inflammatory enzymes like inducible nitric oxide synthase (iNOS) in macrophages and inducible cyclooxygenase (COX-2) in activated microglia. The inhibition of iNOS expression may be caused by the stimulation of IL-10 release induced by ANXA1 in macrophages. Like glucocorticoids, ANXA1 exerts profound inhibitory effects on both neutrophil and monocyte migration in inflammation. Several mechanisms may contribute to the protein effect on cell migration, namely the activation of receptors like the formyl peptide receptor (FPR) and the lipoxin A4 receptor (ALXR), the shedding of L-selectin, the binding to alpha4beta1 integrin and carboxylated N-glycans. Furthermore, again mimicking the action of glucocorticoids, ANXA1 promotes inflammatory cell apoptosis associated with transient rise in intracellular calcium and caspase-3 activation. Finally, ANXA1 has been recently identified as one of the 'eat-me' signals on apoptotic cells to be recognised and ingested by phagocytes. Thus, ANXA1 may contribute to the anti-inflammatory signalling that allows safe post-apoptotic clearance of dead cells.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/4/2010
Abstract
Annexin A1 (AnxA1) is a candidate regulator of the epithelial- to mesenchymal (EMT)-like phenotypic switch, a pivotal event in breast cancer progression. We show here that AnxA1 expression is associated with a highly invasive basal-like breast cancer subtype both in a panel of human breast cancer cell lines as in breast cancer patients and that AnxA1 is functionally related to breast cancer progression. AnxA1 knockdown in invasive basal-like breast cancer cells reduced the number of spontaneous lung metastasis, whereas additional expression of AnxA1 enhanced metastatic spread. AnxA1 promotes metastasis formation by enhancing TGFbeta/Smad signaling and actin reorganization, which facilitates an EMT-like switch, thereby allowing efficient cell migration and invasion of metastatic breast cancer cells.
Publication
Journal: Blood
April/2/2006
Abstract
We have tested the effects of annexin 1 (ANXA1) and its N-terminal peptide Ac2-26 on polymorphonuclear leukocyte (PMN) recruitment under flow. Differential effects of the full-length protein and its peptide were observed; ANXA1 inhibited firm adhesion of human PMNs, while Ac2-26 significantly attenuated capture and rolling without effect on firm adhesion. Analysis of the effects of ANXA1 and Ac2-26 on PMN adhesion molecule expression supported the flow chamber results, with Ac2-26 but not ANXA1 causing l-selectin and PSGL-1 shedding. ANXA1 and its peptide act via the FPR family of receptors. This was corroborated using HEK-293 cells transfected with FPR or FPRL-1/ALX (the 2 members of this family expressed by human PMNs). While Ac2-26 bound both FPR and FPRL-1/ALX, ANXA1 bound FPRL-1/ALX only. ANXA1 and Ac2-26 acted as genuine agonists; Ac2-26 binding led to ERK activation in both FPR- and FPRL-1/ALX-transfected cells, while ANXA1 caused ERK activation only in cells transfected with FPRL-1/ALX. Finally, blockade of FPRL-1/ALX with a neutralizing monoclonal antibody was found to abrogate the effects of ANXA1 in the flow chamber but was without effect on Ac2-26-mediated inhibition of rolling. These findings demonstrate for the first time distinct mechanisms of action for ANXA1 and its N-terminal peptide Ac2-26.
Publication
Journal: Journal of Clinical Investigation
May/11/2015
Abstract
Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.
Publication
Journal: Journal of Biological Chemistry
August/20/2006
Abstract
Annexin 1 (AnxA1) is a multifunctional phospholipid-binding protein associated with the development of metastasis in some invasive epithelial malignancies. However, the role of AnxA1 in the migration/invasion of epithelial cells is not known. In this study, experiments were performed to investigate the role of AnxA1 in the invasion of a model epithelial cell line, SKCO-15, derived from colorectal adenocarcinoma. Small interfering RNA-mediated knockdown of AnxA1 expression resulted in a significant reduction in invasion through Matrigel-coated filters. Localization studies revealed a translocation of AnxA1 to the cell surface upon the induction of cell migration, and functional inhibition of cell surface AnxA1 using antiserum (LCO1) significantly reduced cell invasion. Conversely, SKCO-15 cell invasion was increased by approximately 2-fold in the presence of recombinant full-length AnxA1 and the AnxA1 N-terminal-derived peptide mimetic, Ac2-26. Because extracellular AnxA1 has been shown to regulate leukocyte migratory events through interactions with n-formyl peptide receptors (nFPRs), we examined the expression of FPR-1, FPRL-1, and FPRL-2 in SKCO-15 cells by reverse transcriptase-PCR and identified expression of all three receptors in this cell line. Treatment of SKCO-15 cells with AnxA1, Ac2-26, and the classical nFPR agonist, formylmethionylleucylphenylalanine, induced intracellular calcium release consistent with nFPR activation. Furthermore, the nFPR antagonist, Boc2, abrogated the AnxA1 and Ac2-26-induced intracellular calcium release and increase in SKCO-15 cell invasion. Together, these results support an autocrine/paracrine role for membrane AnxA1 in stimulating SKCO-15 cell migration through nFPR activation. The findings in this study suggest that activation of nFPRs stimulates epithelial cell motility important in the development of metastasis as well as wound healing.
Publication
Journal: Science Translational Medicine
September/22/2016
Abstract
Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular lipid and protein components to target cells, yet their function in disease is only now being explored. We found that neutrophil-derived MVs were increased in concentration in synovial fluid from rheumatoid arthritis patients compared to paired plasma. Synovial MVs overexpressed the proresolving, anti-inflammatory protein annexin A1 (AnxA1). Mice deficient in TMEM16F, a lipid scramblase required for microvesiculation, exhibited exacerbated cartilage damage when subjected to inflammatory arthritis. To determine the function of MVs in inflammatory arthritis, toward the possibility of MV-based therapeutics, we examined the role of immune cell-derived MVs in rodent models and in human primary chondrocytes. In vitro, exogenous neutrophil-derived AnxA1(+) MVs activated anabolic gene expression in chondrocytes, leading to extracellular matrix accumulation and cartilage protection through the reduction in stress-adaptive homeostatic mediators interleukin-8 and prostaglandin E2. In vivo, intra-articular injection of AnxA1(+) MV lessened cartilage degradation caused by inflammatory arthritis. Arthritic mice receiving adoptive transfer of whole neutrophils displayed abundant MVs within cartilage matrix and revealed that MVs, but not neutrophils themselves, can penetrate cartilage. Mechanistic studies support a model whereby MV-associated AnxA1 interacts with its receptor FPR2 (formyl peptide receptor 2)/ALX, increasing transforming growth factor-β production by chondrocytes, ultimately leading to cartilage protection. We envisage that MVs, either directly or loaded with therapeutics, can be harnessed as a unique therapeutic strategy for protection in diseases associated with cartilage degeneration.
Publication
Journal: FASEB Journal
August/10/2003
Abstract
The glucocorticoid-inducible protein annexin (ANXA) 1 is an anti-inflammatory mediator that down-regulates the host response. Endogenously, ANXA1 is released in large amounts from adherent polymorphonuclear neutrophils (PMN) and binds to their cell surface to inhibit their extravasation into inflamed tissues. The present study determined the effects of exogenous ANXA1 on several functions of human PMN in vitro. Addition of 0.1-1 microM human recombinant ANXA1 to the PMN provoked rapid and transient changes in intracellular Ca2+ concentrations that were blocked by the Ca2+ channel inhibitor SKF-96365. Although ANXA1 did not affect oxidant production and only minimally affected PMN chemotactic properties, the ANXA1-promoted Ca2+ influx was associated with two important functional effects: shedding of L-selectin and acceleration of PMN apoptosis. The latter effect was confirmed using three distinct technical procedures, namely, cell cycle, Hoechst staining, and ANXA5 binding assay. ANXA1-induced PMN apoptosis was insensitive to inhibitors of L-selectin shedding, whereas it appeared to be associated with dephosphorylation of the proapoptotic intracellular mediator BAD. In conclusion, exogenous ANXA1 displayed selective actions on human PMN. We propose that the new proapoptotic effect reported here may be part of the spectrum of ANXA1-mediated events involved in the resolution of acute inflammation.
Publication
Journal: Journal of Immunology
December/1/2010
Abstract
The brain microenvironment is continuously monitored by microglia with the detection of apoptotic cells or pathogens being rapidly followed by their phagocytosis to prevent inflammatory responses. The protein annexin A1 (ANXA1) is key to the phagocytosis of apoptotic leukocytes during peripheral inflammatory resolution, but the pathophysiological significance of its expression in the CNS that is restricted almost exclusively to microglia is unclear. In this study, we test the hypothesis that ANXA1 is important in the microglial clearance of apoptotic neurons in both noninflammatory and inflammatory conditions. We have identified ANXA1 to be sparingly expressed in microglia of normally aged human brains and to be more strongly expressed in Alzheimer's disease. Using an in vitro model comprising microglial and neuronal cell lines, as well as primary microglia from wild-type and ANXA1 null mice, we have identified two distinct roles for microglial ANXA1: 1) controlling the noninflammatory phagocytosis of apoptotic neurons and 2) promoting resolution of inflammatory microglial activation. In particular, we showed that microglial-derived ANXA1 targets apoptotic neurons, serving as both an "eat me" signal and a bridge between phosphatidylserine on the dying cell and formyl peptide receptor 2 on the phagocytosing microglia. Moreover, inflammatory activation of microglia impairs their ability to discriminate between apoptotic and nonapoptotic cells, an ability restored by exogenous ANXA1. We thus show that ANXA1 is fundamental for brain homeostasis, and we suggest that ANXA1 and its peptidomimetics can be novel therapeutic targets in neuroinflammation.
Publication
Journal: Journal of Leukocyte Biology
September/16/2012
Abstract
This study aimed at assessing whether AnxA1, a downstream mediator for the anti-inflammatory effects of GCs, could affect the fate of immune cells in tissue exudates, using LPS-induced pleurisy in BALB/c mice. AnxA1 protein expression in exudates was increased during natural resolution, as seen at 48-72 h post-LPS, an effect augmented by treatment with GC and associated with marked presence of apoptotic neutrophils in the pleural exudates. The functional relevance of AnxA1 was determined using a neutralizing antibody or a nonspecific antagonist at FPR/ALXRs: either treatment inhibited both spontaneous and GC-induced resolution of inflammation. Injection of Ac2-26 (100 μg, given 4 h into the LPS response), an AnxA1-active N-terminal peptide, promoted active resolution and augmented the extent of neutrophil apoptosis. Such an effect was prevented by the pan-caspase inhibitor zVAD-fmk. Mechanistically, resolution of neutrophilic inflammation was linked to cell apoptosis with activation of Bax and caspase-3 and inhibition of survival pathways Mcl-1, ERK1/2, and NF-κB. These novel in vivo data, using a dynamic model of acute inflammation, provide evidence that AnxA1 is a mediator of natural and GC-induced resolution of inflammation with profound effects on neutrophil apoptosis.
Publication
Journal: Endocrinology
April/9/2003
Abstract
Our recent studies on rat pituitary tissue suggest that the annexin 1 (ANXA1)-dependent inhibitory actions of glucocorticoids on ACTH secretion are effected via a paracrine mechanism that involves protein kinase C (PKC)-dependent translocation of a serine-phosphorylated species of ANXA1 (Ser-P-ANXA1) to the plasma membrane of the nonsecretory folliculostellate cells. In the present study, we have used a human folliculostellate cell line (PDFS) to explore the signaling mechanisms that cause the translocation of Ser-P-ANXA1 to the membrane together with Western blot analysis and flow cytometry to detect the phosphorylated protein. Exposure of PDFS cells to dexamethasone caused time-dependent increases in the expression of ANXA1 mRNA and protein, which were first detected within 2 h of steroid contact. This genomic response was preceded by the appearance within 30 min of substantially increased amounts of Ser-P-ANXA1 and by translocation of the phosphorylated protein to the cell surface. The prompt membrane translocation of Ser-P-ANXA1 provoked by dexamethasone was inhibited by the glucocorticoid receptor, antagonist, mifepristone, but not by actinomycin D or cycloheximide, which effectively inhibit mRNA and protein synthesis respectively in our preparation. It was also inhibited by a nonselective PKC inhibitor (PKC(9-31)), by a selective inhibitor of Ca(2+)-dependent PKCs (Go 6976) and by annexin 5 (which sequesters PKC in other systems). In addition, blockade of phosphatidylinositiol 3-kinase (wortmannin) or MAPK pathways with PD 98059 or UO 126 (selective for MAPK kinse 1 and 2) prevented the steroid-induced translocation of Ser-P-ANXA1 to the cell surface. These results suggest that glucocorticoids induce rapid serine phosphorylation and membrane translocation of ANXA1 via a novel nongenomic, glucocorticoid receptor-dependent mechanism that requires MAPK, phosphatidylinositiol 3-kinase, and Ca(2+)-dependent PKC pathways.
Publication
Journal: Human Pathology
January/15/2007
Abstract
Annexin A1 (ANXA1) is a calcium- and phospholipid-binding protein and a known mediator of glucocorticoid-regulated inflammatory responses. Using a combined multiple high-throughput approach, we recently identified a reduced expression of ANXA1 in human breast cancer. The finding was confirmed at the gene level by quantitative reverse transcription-polymerase chain reaction and at the protein level by immunohistochemical staining of normal, benign, and malignant breast tissues. In this study, we constructed and used a high-density human breast cancer tissue microarray to characterize the expressional pattern of ANXA1 according to histopathologies. The tissue microarray contains 1,158 informative breast tissue cores of different histologies including normal tissues, hyperplasia, in situ and invasive tumors, and lymph node metastases. Our results showed that there was a significant decrease in glandular expression of ANXA1 in ductal carcinoma in situ and invasive ductal carcinoma compared with either normal breast tissue or hyperplasia (P < .0001). Moreover, in benign breast tissue, myoepithelial cells showed strong expression of ANXA1. There was a decrease of ANXA1 expression in myoepithelial cells in ductal carcinoma in situ lesions compared with the same cell population in either normal or hyperplastic lesions. These results suggest that suppressed ANXA1 expression in breast tissue is correlated with breast cancer development and progression.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/13/2013
Abstract
The blood-brain barrier (BBB), a critical guardian of communication between the periphery and the brain, is frequently compromised in neurological diseases such as multiple sclerosis (MS), resulting in the inappropriate passage of molecules and leukocytes into the brain. Here we show that the glucocorticoid anti-inflammatory messenger annexin A1 (ANXA1) is expressed in brain microvascular endothelial cells, where it regulates BBB integrity. In particular, ANXA1(-/-) mice exhibit significantly increased BBB permeability as a result of disrupted interendothelial cell tight junctions, essentially related to changes in the actin cytoskeleton, which stabilizes tight and adherens junctions. This situation is reminiscent of early MS pathology, a relationship confirmed by our detection of a selective loss of ANXA1 in the plasma and cerebrovascular endothelium of patients with MS. Importantly, this loss is swiftly restored by i.v. administration of human recombinant ANXA1. Analysis in vitro confirms that treatment of cerebrovascular endothelial cells with recombinant ANXA1 restores cell polarity, cytoskeleton integrity, and paracellular permeability through inhibition of the small G protein RhoA. We thus propose ANXA1 as a critical physiological regulator of BBB integrity and suggest it may have utility in the treatment of MS, correcting BBB function and hence ameliorating disease.
Publication
Journal: Journal of Immunology Research
October/31/2016
Abstract
Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.
Publication
Journal: Journal of Immunology
December/23/2008
Abstract
During mucosal inflammation, a complex array of proinflammatory and protective mechanisms regulates inflammation and severity of injury. Secretion of anti-inflammatory mediators is a mechanism that is critical in controlling inflammatory responses and promoting epithelial restitution and barrier recovery. AnxA1 is a potent anti-inflammatory protein that has been implicated to play a critical immune regulatory role in models of inflammation. Although AnxA1 has been shown to be secreted in intestinal mucosal tissues during inflammation, its potential role in modulating the injury/inflammatory response is not understood. In this study, we demonstrate that AnxA1-deficient animals exhibit increased susceptibility to dextran sulfate sodium (DSS)-induced colitis with greater clinical morbidity and histopathologic mucosal injury. Furthermore, impaired recovery following withdrawal of DSS administration was observed in AnxA1 (-/-) animals compared with wild-type (WT) control mice that was independent of inflammatory cell infiltration. Since AnxA1 exerts its anti-inflammatory properties through stimulation of ALX/FPRL-1, we explored the role of this receptor-ligand interaction in regulating DSS-induced colitis. Interestingly, treatment with an ALX/FPRL-1 agonist, 15-epi-lipoxin A4 reversed the enhanced sensitivity of AnxA1 (-/-) mice to DSS colitis. In contrast, 15-epi-lipoxin A4 did not significantly improve the severity of disease in WT animals. Additionally, differential expression of ALX/FPLR-1 in control and DSS-treated WT and AnxA1-deficient animals suggested a potential role for AnxA1 in regulating ALX/FPRL-1 expression under pathophysiological conditions. Together, these results support a role of endogenous AnxA1 in the protective and reparative properties of the intestinal mucosal epithelium.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: International Journal of Oncology
February/1/2009
Abstract
Annexins (ANXs) constitute a family of Ca2+-dependent membrane-binding proteins; at least 20 of them have been described to date. Among these, Annexin A2 (ANXA2) has been revealed as a multi-functional protein in vitro. Its actual role in vivo, however, requires further investigation. We already reported that ANX-I (ANXA1) was up-regulated in hepatocellular carcinoma (HCC). The role of ANXA2 in various liver diseases including HCC remains obscure. In the present study, the protein and mRNA levels of ANXA2, as well as its localization, were determined for the normal human liver, chronic hepatitis liver, and non-tumorous and tumorous portions of HCC tissues. ANXA2 was rarely detected in either normal or chronic hepatitis liver tissues, whereas it was overexpressed at both the transcriptional and translational levels in tumorous and non-tumorous regions of HCC. In addition, in many cases, more ANXA2 was expressed in the tumorous portion than in the non-tumorous portion of HCC. The expression of ANXA2 was mainly localized in cancer cells, especially in poorly differentiated HCC. Furthermore, ANXA2 was tyrosine-phosphorylated in HCC. These data suggest that overexpression and tyrosine phosphorylation of ANXA2 play important roles in the malignant transformation process leading to HCC and are related to the histological grade of HCC.
Publication
Journal: Human Reproduction
June/29/2005
Abstract
BACKGROUND
Uterine leiomyomas are extremely common and a major cause of pelvic pain, bleeding, infertility, and the leading indication for hysterectomy. Familial and epidemiological studies provide compelling evidence that genetic alterations play an important role in leiomyoma development.
METHODS
Using Affymetrix U133A GeneChip we analysed expression profiles of 22,283 genes in paired samples of leiomyoma and adjacent normal myometrium. We compared our results with previously published data on gene expression in uterine leiomyoma and identified the overlapping gene alterations.
RESULTS
We detected 80 genes with average differences of>> or = 2-fold and false discovery rates of < 5% (14 overexpressed and 66 underexpressed). A comparative analysis including eight previous gene expression studies revealed eight prominent genes (ADH1, ATF3, CRABP2, CYR61, DPT, GRIA2, IGF2, MEST) identified by at least five different studies, eleven genes (ALDH1, CD24, CTGF, DCX, DUSP1, FOS, GAGEC1, IGFBP6, PTGDS, PTGER3, TYMS) reported by four studies, twelve genes (ABCA, ANXA1, APM2, CCL21, CDKN1A, CRMP1, EMP1, ESR1, FY, MAP3K5, TGFBR2, TIMP3) identified by three studies, and 40 genes reported by two different studies.
CONCLUSIONS
Review of gene expression data revealed concordant changes in genes regulating retinoid synthesis, IGF metabolism, TGF-beta signaling and extracellular matrix formation. Gene expression studies provide clues to the relevant pathways of leiomyoma development.
Publication
Journal: Cellular Signalling
June/2/2009
Abstract
At the cell surface, activation of the epidermal growth factor (EGF) receptor triggers a complex network of signalling events that regulate a variety of cellular processes. For signal termination, the activated EGF receptor is internalised and targeted to lysosomes for degradation. Microdomain localization at the plasma membrane and endocytic transport of the EGFR is important for the formation of compartment-specific signalling complexes and is regulated by scaffolding and targeting proteins. This includes Ca2+-effector proteins, such as calmodulin and annexins (Anx), in particular AnxA1, AnxA2, AnxA6 and as shown recently,AnxA8. Given that these annexins show differences in their expression patterns, subcellular localization and mode of action, they are likely to differentially contribute and cooperate in the fine-tuning of EGFR activity. In support of this hypothesis, current literature suggests these annexins to be involved in different steps that control the endocytic transport and signalling of the EGF receptor. This review summarizes how the coordinated activity of AnxA1, AnxA2, AnxA6 and AnxA8 can contribute to regulate EGF receptor localization and activity.
load more...