Editorial: Veterinary Reproductive Immunology
Journal: 2022/January - Frontiers in Veterinary Science
Abstract:
Keywords: Medawar paradox; T-regulatory cells; domestic animals; endometrium; fetal allograft; innate immune cells; pregnancy loss; reproductive immunology.
Relations:
Content
Organisms
(1)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board

Editorial: Veterinary Reproductive Immunology

Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
Department of Animal Science, Texas A&M University, College Station, TX, United States
OHVRI Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
Edited and reviewed by: Ahmed Tibary, Washington State University, United States
*Correspondence: Juan G. Maldonado-Estrada oc.ude.aedu@odanodlam.nauj
This article was submitted to Animal Reproduction - Theriogenology, a section of the journal Frontiers in Veterinary Science
Edited and reviewed by: Ahmed Tibary, Washington State University, United States
Received 2021 Nov 26; Accepted 2021 Dec 6.
Keywords: domestic animals, endometrium, fetal allograft, innate immune cells, Medawar paradox, pregnancy loss, reproductive immunology, T-regulatory cells
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Acknowledgments

The authors thank to their corresponding institutions for financial support of their research and academic activities.

Acknowledgments

References

  • 1. Medawar PB. Some immunological and endocrinological problems were raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol. (1953) 7:320–38. [PubMed]
  • 2. Rendell V, Bath NM, Brennan TV. Medawar's paradox and immune mechanisms of fetomaternal tolerance. OBM Transplant. (2020) 4:26. 10.21926/obm.transplant.2001104 ] [
  • 3. Billington WD. Origins and evolution of reproductive immunology: a personal perspective. J Reprod Immunol. (2015) 108:2–5. 10.1016/j.jri.2014.10.003 [] [[PubMed]
  • 4. Billington WD. Influence of immunological dissimilarity of mother and foetus on size of placenta in mice. Nature. (1964) 202:317–8. 10.1038/202317a0 [] [[PubMed]
  • 5. Billingham RE. Transplantation immunity and the maternal-fetal relation. N Engl J Med. (1964) 270:720–5. 10.1056/NEJM196404022701406 [] [[PubMed]
  • 6. Redman CW, Sargent IL. Microparticles and immunomodulation in pregnancy and preeclampsia. J Reprod Immunol. (2007) 76:61–7. 10.1016/j.jri.2007.03.008 [] [[PubMed]
  • 7. Wells M, Hsi BL, Faulk WP. Class I antigens of the major histocompatibility complex on cytotrophoblast of the human placental basal plate. Am J Reprod Immunol. (1984) 6:167–74. 10.1111/j.1600-0897.1984.tb00132.x [] [[PubMed]
  • 8. Billington WD, Burrows FJ. The rat placenta expresses paternal class I major histocompatibility antigens. J Reprod Immunol. (1986) 9:155–60. 10.1016/0165-0378(86)90008-2 [] [[PubMed]
  • 9. Crump A, Donaldson WL, Miller J, Kydd JH, Allen WR, Antczak DF. Expression of major histocompatibility complex (MHC) antigens on horse trophoblast. J Reprod Fertil Suppl. (1987) 35:379–88. [[PubMed]
  • 10. Hunt JS, Fishback JL, Andrews GK, Wood GW. Expression of class I HLA genes by trophoblast cells. Analysis by in situ hybridization. J Immunol. (1988) 140:1293–99. [[PubMed]
  • 11. Redline RW, Lu CY. Localization of fetal major histocompatibility complex antigens and maternal leukocytes in murine placenta. Implications for maternal-fetal immunological relationship. Lab Invest. (1989) 61:27–36. [[PubMed]
  • 12. Donaldson WL, Zhang CH, Oriol JG, Antczak DF. Invasive equine trophoblast expresses conventional class I major histocompatibility complex antigens. Development. (1990) 110:63–71. [[PubMed]
  • 13. Herzenberg LA, Bianchi DW, Schröder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA. (1979) 76:1453–5. 10.1073/pnas.76.3.1453 ] [
  • 14. Lo YM, Lo ES, Watson N, Noakes L, Sargent IL, Thilaganathan B, et al. . Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood. (1996) 88:4390–5. [[PubMed]
  • 15. Adams Waldorf KM, Gammill HS, Lucas J, Aydelotte TM, Leisenring WM, Lambert NC, et al. . Dynamic changes in fetal microchimerism in maternal peripheral blood mononuclear cells, CD4+ and CD8+ cells in normal pregnancy. Placenta. (2010) 31:589–94. 10.1016/j.placenta.2010.04.013 ] [
  • 16. Bianchi DW, Khosrotehrani K, Way SS, MacKenzie TC, Bajema I, O'Donoghue K. Forever connected: the lifelong biological consequences of fetomaternal and maternofetal microchimerism. Clin Chem. (2021) 67:351–62. 10.1093/clinchem/hvaa304 [] [[PubMed]
  • 17. Khosrotehrani K, Wataganara T, Bianchi DW, Johnson KL. Fetal cell-free DNA circulates in the plasma of pregnant mice: relevance for animal models of fetomaternal trafficking. Hum Reprod. (2004) 19:2460–4. 10.1093/humrep/deh445 [] [[PubMed]
  • 18. Vernochet C, Caucheteux SM, Kanellopoulos-Langevin C. Bi-directional cell trafficking between mother and fetus in mouse placenta. Placenta. (2007) 28:639–49. 10.1016/j.placenta.2006.10.006 [] [[PubMed]
  • 19. Zeng XX, Tan KH, Yeo A, Sasajala P, Tan X, Xiao ZC, et al. . Pregnancy-associated progenitor cells differentiate and mature into neurons in the maternal brain. Stem Cells Dev. (2010) 19:1819–30. 10.1089/scd.2010.0046 [] [[PubMed]
  • 20. McConico A, Butters K, Lien K, Knudsen B, Wu X, Platt JL, et al. . In utero cell transfer between porcine littermates. Reprod Fertil Dev. (2011) 23:297–302. 10.1071/RD10165 ] [
  • 21. Gash KK, Yang M, Fan Z, Regouski M, Rutigliano HM, Polejaeva IA. Assessment of microchimerism following somatic cell nuclear transfer and natural pregnancies in goats. J Anim Sci. (2019) 97:3786–94. 10.1093/jas/skz248 ] [
  • 22. Brown JA, Niland ES, Pierce NL, Taylor JB. Validation of fetal microchimerism after pregnancy in the ovine using qPCR. Transl Anim Sci. (2021) 5:txab100. 10.1093/tas/txab100 ] [
  • 23. Piotrowski P, Croy BA. Maternal cells are widely distributed in murine fetuses in utero. Biol Reprod. (1996) 54:1103–10. 10.1095/biolreprod54.5.1103 [] [[PubMed]
  • 24. Bonney EA, Matzinger P. The maternal immune system's interaction with circulating fetal cells. J Immunol. (1997) 158:40–7. [[PubMed]
  • 25. Marleau AM, Greenwood JD, Wei Q, Singh B, Croy BA. Chimerism of murine fetal bone marrow by maternal cells occurs in late gestation and persists into adulthood. Lab Invest. (2003) 83:673–81. 10.1097/01.lab.0000067500.85003.32 [] [[PubMed]
  • 26. Khosrotehrani K, Johnson KL, Guégan S, Stroh H, Bianchi DW. Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol. (2005) 66:1–12. 10.1016/j.jri.2005.02.001 [] [[PubMed]
  • 27. Stelzer IA, Thiele K, Solano ME. Maternal microchimerism: lessons learned from murine models. J Reprod Immunol. (2015) 108:12–25. 10.1016/j.jri.2014.12.007 [] [[PubMed]
  • 28. Stelzer IA, Urbschat C, Schepanski S, Thiele K, Triviai I, Wieczorek A, et al. . Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun. (2021) 12:4706. 10.1038/s41467-021-24719-z ] [
  • 29. Craven CM, Ward K. Syncytiotrophoblastic fragments in first-trimester decidual veins: evidence of placental perfusion by the maternal circulation early in pregnancy. Am J Obstet Gynecol. (1999) 181:455–9. 10.1016/s0002-9378(99)70578-8 [] [[PubMed]
  • 30. Huppertz B, Kingdom J, Caniggia I, Desoye G, Black S, Korr H, et al. . Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta. (2003) 24:181–90. 10.1053/plac.2002.0903 [] [[PubMed]
  • 31. Wei J, Blenkiron C, Tsai P, James JL, Chen Q, Stone PR, et al. . Placental trophoblast debris mediated feto-maternal signalling via small RNA delivery: implications for preeclampsia. Sci Rep. (2017) 7:14681. 10.1038/s41598-017-14180-8 ] [
  • 32. Carrasco-Wong I, Aguilera-Olguín M, Escalona-Rivano R, Chiarello DI, Barragán-Zúñiga LJ, Sosa-Macías M, et al. . Syncytiotrophoblast stress in early onset preeclampsia: the issues perpetuating the syndrome. Placenta. (2021) 113:57–66. 10.1016/j.placenta.2021.05.002 [] [[PubMed]
  • 33. Beer AE, Billingham RE, Yang SL. Maternally induced transplantation immunity, tolerance, and runt disease in rats. J Exp Med. (1972) 135:808–26. 10.1084/jem.135.4.808 ] [
  • 34. Beer AE, Billingham RE. Maternally acquired runt disease. Science. (1973) 179:240–3. 10.1126/science.179.4070.240 [] [[PubMed]
  • 35. Clark DA, Croy BA, Rossant J, Chaouat G. Immune presensitization and local intrauterine defences as determinants of success or failure of murine interspecies pregnancies. J Reprod Fertil. (1986) 77:633–43. 10.1530/jrf.0.0770633 [] [[PubMed]
  • 36. Clark DA, Chaouat G, Guenet JL, Kiger N. Local active suppression and successful vaccination against spontaneous abortion in CBA/J mice. J Reprod Immunol. (1987) 10:79–85. 10.1016/0165-0378(87)90052-0 [] [[PubMed]
  • 37. Chaouat G, Menu E, Clark DA, Dy M, Minkowski M, Wegmann TG. Control of fetal survival in CBA x DBA/2 mice by lymphokine therapy. J Reprod Fertil. (1990) 89:447–58. 10.1530/jrf.0.0890447 [] [[PubMed]
  • 38. Martal J, Lacroix MC, Loudes C, Saunier M, Wintenberger-Torrès S. Trophoblastin, an antiluteolytic protein present in early pregnancy in sheep. J Reprod Fertil. (1979) 56:63–73. 10.1530/jrf.0.0560063 [] [[PubMed]
  • 39. Charpigny G, Reinaud P, Huet JC, Guillomot M, Charlier M, Pernollet JC, et al. . High homology between a trophoblastic protein (trophoblastin) isolated from ovine embryo and alpha-interferons. FEBS Lett. (1988) 228:12–16. 10.1016/0014-5793(88)80574-x [] [[PubMed]
  • 40. Godkin JD, Bazer FW, Moffatt J, Sessions F, Roberts RM. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13-21. J Reprod Fertil. (1982) 65:141–50. 10.1530/jrf.0.0650141 [] [[PubMed]
  • 41. Godkin JD, Bazer FW, Roberts RM. Ovine trophoblast protein 1, an early secreted blastocyst protein, binds specifically to uterine endometrium and affects protein synthesis. Endocrinology. (1984) 114:120–30. 10.1210/endo-114-1-120 [] [[PubMed]
  • 42. Helmer SD, Hansen PJ, Anthony RV, Thatcher WW, Bazer FW, Roberts RM. Identification of bovine trophoblast protein-1, a secretory protein immunologically related to ovine trophoblast protein-1. J Reprod Fertil. (1987) 79:83–91. 10.1530/jrf.0.0790083 [] [[PubMed]
  • 43. Croy BA, Rossant J, Clark DA. Histological and immunological studies of post implantation death of Mus caroli embryos in the Mus musculus uterus. J Reprod Immunol. (1982) 4:277–93. 10.1016/0165-0378(82)90003-1 [] [[PubMed]
  • 44. Croy BA, Gambel P, Rossant J, Wegmann TG. Characterization of murine decidual natural killer (NK) cells and their relevance to the success of pregnancy. Cell Immunol. (1985) 93:315–26. 10.1016/0008-8749(85)90137-6 [] [[PubMed]
  • 45. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. (2004) 63:1–12. 10.1111/j.1399-0039.2004.00170.x [] [[PubMed]
  • 46. Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. (2006) 6:584–94. 10.1038/nri1897 [] [[PubMed]
  • 47. Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. (2003) 69:1438–46. 10.1095/biolreprod.103.017574 [] [[PubMed]
  • 48. Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy?Front Immunol. (2021) 12:607669. 10.3389/fimmu.2021.607669 ] [
  • 49. Antczak DF, Allen WR. Invasive trophoblast in the genus Equus. Ann Immunol. (1984) 135D:325–31. 10.1016/s0769-2625(84)81201-5 [] [[PubMed]
  • 50. Allen WR, Skidmore JA, Stewart F, Antczak DF. Effects of fetal genotype and uterine environment on placental development in equids. J Reprod Fertil. (1993) 98:55–60. 10.1530/jrf.0.0980055 [] [[PubMed]
  • 51. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?Immunol Today. (1993) 14:353–6. 10.1016/0167-5699(93)90235-D [] [[PubMed]
  • 52. Oliveira LJ, Mansouri-Attia N, Fahey AG, Browne J, Forde N, Roche JF, et al. . Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS ONE. (2013) 8:e75571. 10.1371/journal.pone.0075571 ] [
  • 53. Ealy AD, Speckhart SL, Wooldridge LK. Cytokines that serve as embryokines in cattle. Animals. (2021) 11:2313. 10.3390/ani11082313 ] [
  • 54. Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. (2021) 12:717808.
  • 55. Wang P, Jiang G, Ju W, Cai Y, Wang J, Wu F. Influence of Bushen Tiaochong cycle therapy on Th1/Th2 deviation, sex hormone level, and pregnancy outcome of alloimmune recurrent spontaneous abortion. Evid Based Complement Alternat Med. (2021) 2021:8624414. 10.1155/2021/8624414 ] [
  • 56. Billington WD. Species diversity in the immunogenetic relationship between mother and fetus: is trophoblast insusceptibility to immunological destruction the only essential common feature for the maintenance of allogeneic pregnancy?Exp Clin Immunogenet. (1993) 10:73–84. [[PubMed]
  • 57. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy?Semin Immunopathol. (2007) 29:95–113. 10.1007/s00281-007-0069-0 [] [[PubMed]
  • 58. Chaouat G. Inflammation, NK cells and implantation: friend and foe (the good, the bad and the ugly?): replacing placental viviparity in an evolutionary perspective. J Reprod Immunol. (2013) 97:2–13. 10.1016/j.jri.2012.10.009 [] [[PubMed]
  • 59. Maeda Y, Ohtsuka H, Tomioka M, Oikawa M. Effect of progesterone on Th1/Th2/Th17 and regulatory T cell-related genes in peripheral blood mononuclear cells during pregnancy in cows. Vet Res Commun. (2013) 37:43–9. 10.1007/s11259-012-9545-7 [] [[PubMed]
  • 60. Huang N, Chi H, Qiao J. Role of regulatory T cells in regulating fetal-maternal immune tolerance in healthy pregnancies and reproductive diseases. Front Immunol. (2020) 11:1023. 10.3389/fimmu.2020.01023 ] [
  • 61. Tsuda S, Nakashima A, Morita K, Shima T, Yoneda S, Kishi H, et al. . The role of decidual regulatory T cells in the induction and maintenance of fetal antigen-specific tolerance: imbalance between regulatory and cytotoxic T cells in pregnancy complications. Hum Immunol. (2021) 82:346–52. 10.1016/j.humimm.2021.01.019 [] [[PubMed]
  • 62. Miyamoto Y, Skarzynski DJ, Okuda K. Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?Biol Reprod. (2000) 62:1109–15. 10.1095/biolreprod62.5.1109 [] [[PubMed]
  • 63. Murakami S, Miyamoto Y, Skarzynski DJ, Okuda K. Effects of tumor necrosis factor-alpha on secretion of prostaglandins E2 and F2alpha in bovine endometrium throughout the estrous cycle. Theriogenology. (2001) 55:1667–78. 10.1016/s0093-691x(01)00511-8 [] [[PubMed]
  • 64. Okuda K, Kasahara Y, Murakami S, Takahashi H, Woclawek-Potocka I, Skarzynski DJ. Interferon-tau blocks the stimulatory effect of tumor necrosis factor-alpha on prostaglandin F2alpha synthesis by bovine endometrial stromal cells. Biol Reprod. (2004) 70:191–7. 10.1095/biolreprod.103.019083 [] [[PubMed]
  • 65. Nishimura R, Bowolaksono A, Acosta TJ, Murakami S, Piotrowska K, Skarzynski DJ, et al. . Possible role of interleukin-1 in the regulation of bovine corpus luteum throughout the luteal phase. Biol Reprod. (2004) 71:1688–93. 10.1095/biolreprod.104.032151 [] [[PubMed]
  • 66. Skarzynski DJ, Piotrowska KK, Bah MM, Korzekwa A, Woclawek-Potocka I, Sawai K, et al. . Effects of exogenous tumour necrosis factor-alpha on the secretory function of the bovine reproductive tract depend on tumour necrosis factor-alpha concentrations. Reprod Domest Anim. (2009) 44:371–9. 10.1111/j.1439-0531.2007.01016.x [] [[PubMed]
  • 67. Duong HT, Piotrowska-Tomala KK, Acosta TJ, Bah MM, Sinderewicz E, Majewska M, et al. . Effects of cortisol on pregnancy rate and corpus luteum function in heifers: an in vivo study. J Reprod Dev. (2012) 58:223–30. 10.1262/jrd.11-122t [] [[PubMed]
  • 68. Galvão A, Skarzynski DJ, Szóstek A, Silva E, Tramontano A, Mollo A, et al. . Cytokines tumor necrosis factor-α and interferon-γ participate in modulation of the equine corpus luteum as autocrine and paracrine factors. J Reprod Immunol. (2012) 93:28–37. 10.1016/j.jri.2011.11.002 [] [[PubMed]
  • 69. Rebordão MR, Amaral A, Fernandes C, Silva E, Lukasik K, Szóstek-Mioduchowska A, et al. . Enzymes present in neutrophil extracellular traps may stimulate the fibrogenic PGF2α pathway in the mare endometrium. Animals. (2021) 11:2615. 10.3390/ani11092615 ] [
  • 70. Okuda K, Sakumoto R, Okamoto N, Acosta TJ, Abe H, Okada H, et al. . Cellular localization of genes and proteins for tumor necrosis factor-α (TNF), TNF receptor types I and II in bovine endometrium. Mol Cell Endocrinol. (2010) 330:41–8. 10.1016/j.mce.2010.07.025 [] [[PubMed]
  • 71. Choi Y, Johnson GA, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate major histocompatibility complex class I and beta2-microglobulin expression in the ovine uterus. Biol Reprod. (2003) 68:1703–10. 10.1095/biolreprod.102.012708 [] [[PubMed]
  • 72. Wang X, Frank JW, Xu J, Dunlap KA, Satterfield MC, Burghardt RC, et al. . Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol Reprod. (2014) 91:59. 10.1095/biolreprod.114.121202 [] [[PubMed]
  • 73. Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, et al. . Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol. (2018) 9:10. 10.1186/s40104-017-0225-x ] [
  • 74. Halloran KM, Stenhouse C, Wu G, Bazer FW. Arginine, agmatine, and polyamines: key regulators of conceptus development in mammals. Adv Exp Med. Biol. (2021) 1332:1385–105. 10.1007/978-3-030-74180-8_6 [] [[PubMed]
  • 75. Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, et al. . Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins. J Anim Sci Biotechnol. (2021) 12:39. 10.1186/s40104-021-00554-6 ] [
  • 76. Co EC, Gormley M, Kapidzic M, Rosen DB, Scott MA, Stolp HA, et al. . Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol Reprod. (2013) 88:155. 10.1095/biolreprod.112.099465 ] [
  • 77. Fu B, Wei H. Decidual natural killer cells and the immune microenvironment at the maternal-fetal interface. Sci China Life Sci. (2016) 59:1224–31. 10.1007/s11427-016-0337-1 [] [[PubMed]
  • 78. Alok A, Karande AA. The role of glycodelin as an immune-modulating agent at the feto-maternal interface. J Reprod Immunol. (2009) 83:124–7. 10.1016/j.jri.2009.06.261 [] [[PubMed]
  • 79. Jena SR, Nayak J, Kumar S, Kar S, Dixit A, Samanta L. Paternal contributors in recurrent pregnancy loss: cues from comparative proteome profiling of seminal extracellular vesicles. Mol Reprod Dev. (2021) 88:96–112. 10.1002/mrd.23445 [] [[PubMed]
  • 80. Xu L, Li Y, Sang Y, Li DJ, Du M. Crosstalk between trophoblasts and decidual immune cells: the cornerstone of maternal-fetal immunotolerance. Front Immunol. (2021) 12:642392. 10.3389/fimmu.2021.642392 ] [
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.