Apigenin induces apoptosis and counteracts cisplatin-induced chemoresistance via Mcl-1 in ovarian cancer cells
Journal: 2020/August - Experimental and Therapeutic Medicine
Abstract:
Ovarian cancer (OC) is one of the prominent causes of mortality in female patients diagnosed with gynecologic malignancies. While it has previously been demonstrated that apigenin inhibits cell growth in colon and breast cancer cells, the effect of apigenin in OC cells is not fully understood. Therefore, the aim of the present study was to investigate the impact of apigenin on cell death and resistance to cisplatin in OC cells. It was found that apigenin inhibited proliferation, hindered cell cycle progression and promoted SKOV3 cell apoptosis. Moreover, these effects were also observed in cisplatin-resistant SKOV3/DDP cells. Furthermore, apigenin reduced the mitochondrial transmembrane potential, and elevated the ratios of cleaved caspase-3/caspase-3 and Bax/Bcl-2 in the two cell types. Reverse transcription-quantitative PCR and western blotting results demonstrated that apigenin significantly downregulated Mcl-1 at the transcriptional and translational levels in SKOV3 and SKOV3/DDP cells, which was responsible for its cytotoxic functions and chemosensitizing effects. Collectively, the present results identified the impact of apigenin on OC cell death and resistance to cisplatin, and the potential molecular mechanisms. However, additional studies are required to further elucidate the underlying mechanisms.
Keywords: apigenin; apoptosis; chemoresistance; myeloid cell leukemia 1; ovarian cancer.
Relations:
Content
Citations
(2)
References
(47)
Diseases
(4)
Drugs
(1)
Chemicals
(2)
Processes
(5)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Exp Ther Med 20(2): 1329-1336

Apigenin induces apoptosis and counteracts cisplatin-induced chemoresistance via Mcl-1 in ovarian cancer cells

Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
Department of Obstetrics and Gynecology, The Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
Correspondence to: Dr Aiping Chen, Department of Gynecology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, Shandong 266000, P.R. China moc.361@llacpa
Received 2019 Mar 15; Accepted 2020 Feb 25.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Abstract

Ovarian cancer (OC) is one of the prominent causes of mortality in female patients diagnosed with gynecologic malignancies. While it has previously been demonstrated that apigenin inhibits cell growth in colon and breast cancer cells, the effect of apigenin in OC cells is not fully understood. Therefore, the aim of the present study was to investigate the impact of apigenin on cell death and resistance to cisplatin in OC cells. It was found that apigenin inhibited proliferation, hindered cell cycle progression and promoted SKOV3 cell apoptosis. Moreover, these effects were also observed in cisplatin-resistant SKOV3/DDP cells. Furthermore, apigenin reduced the mitochondrial transmembrane potential, and elevated the ratios of cleaved caspase-3/caspase-3 and Bax/Bcl-2 in the two cell types. Reverse transcription-quantitative PCR and western blotting results demonstrated that apigenin significantly downregulated Mcl-1 at the transcriptional and translational levels in SKOV3 and SKOV3/DDP cells, which was responsible for its cytotoxic functions and chemosensitizing effects. Collectively, the present results identified the impact of apigenin on OC cell death and resistance to cisplatin, and the potential molecular mechanisms. However, additional studies are required to further elucidate the underlying mechanisms.

Keywords: apigenin, myeloid cell leukemia 1, chemoresistance, apoptosis, ovarian cancer
Abstract

Acknowledgements

Not applicable.

Acknowledgements

References

  • 1. Enroth S, Berggrund M, Lycke M, Lundberg M, Assarsson E, Olovsson M, Stålberg K, Sundfeldt K, Gyllensten UA two-step strategy for identification of plasma protein biomarkers for endometrial and ovarian cancer. Clin Proteomics. 2018;15(38) doi: 10.1186/s12014-018-9216-y.] [[Google Scholar]
  • 2. Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, Zhu XPrognosis analysis of histone deacetylases mRNA expression in ovarian cancer patients. J Cancer. 2018;9:4547–4555. doi: 10.7150/jca.26780.] [[Google Scholar]
  • 3. Park SJ, Kim J, Kim SN, Lee EJ, Oh S, Seol A, Lee N, Chang SJ, Kim HSPractice patterns of surgery for advanced ovarian cancer: Analysis from international surveys. Jpn J Clin Oncol. 2018;49:137–145. doi: 10.1093/jjco/hyy175.] [[PubMed][Google Scholar]
  • 4. Yousefi H, Momeny M, Ghaffari SH, Parsanejad N, Poursheikhani A, Javadikooshesh S, Zarrinrad G, Esmaeili F, Alishahi Z, Sabourinejad Z, et al IL 6/IL 6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori. 2019;105:84–91. doi: 10.1177/0300891618784790.] [[PubMed][Google Scholar]
  • 5. Momeny M, Eyvani H, Barghi F, Ghaffari SH, Javadikooshesh S, Hassanvand Jamadi R, Esmaeili F, Alishahi Z, Zaghal A, Bashash D, et al Inhibition of bromodomain and extraterminal domain reduces growth and invasive characteristics of chemoresistant ovarian carcinoma cells. Anticancer Drugs. 2018;29:1011–1020. doi: 10.1097/CAD.0000000000000681.] [[PubMed][Google Scholar]
  • 6. Ahmed N, Escalona R, Leung D, Chan E, Kannourakis GTumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol. 2018;53:265–281. doi: 10.1016/j.semcancer.2018.10.002.] [[PubMed][Google Scholar]
  • 7. Ozbey U, Attar R, Romero MA, Alhewairini SS, Afshar B, Sabitaliyevich UY, Hanna-Wakim L, Ozcelik B, Farooqi AAApigenin as an effective anticancer natural product: Spotlight on TRAIL, WNT/β-catenin, JAK-STAT pathways, and microRNAs. J Cell Biochem. 2018;(Oct 2) doi: 10.1002/jcb.27575. (Epub ahead of print) [] [[PubMed][Google Scholar]
  • 8. Perez-Moral N, Saha S, Philo M, Hart DJ, Winterbone MS, Hollands WJ, Spurr M, Bows J, van der Velpen V, Kroon PA, et al Comparative bio-accessibility, bioavailability and bioequivalence of quercetin, apigenin, glucoraphanin and carotenoids from freeze-dried vegetables incorporated into a baked snack versus minimally processed vegetables: Evidence from in vitro models and a human bioavailability study. J Funct Foods. 2018;48:410–419. doi: 10.1016/j.jff.2018.07.035.] [[Google Scholar]
  • 9. Wang Y, Xu Z, Huang Y, Wen X, Wu Y, Zhao Y, Ni YExtraction, purification, and hydrolysis behavior of apigenin-7-O-glucoside from chrysanthemum morifolium tea. Molecules. 2018;23(23) doi: 10.3390/molecules23112933.] [[Google Scholar]
  • 10. Hong J, Fristiohady A, Nguyen CH, Milovanovic D, Huttary N, Krieger S, Hong J, Geleff S, Birner P, Jäger W, et al Apigenin and luteolin attenuate the breaching of MDA-MB231 breast cancer spheroids through the lymph endothelial barrier in vitro. Front Pharmacol. 2018;9(220) doi: 10.3389/fphar.2018.00220.] [[Google Scholar]
  • 11. Maeda Y, Takahashi H, Nakai N, Yanagita T, Ando N, Okubo T, Saito K, Shiga K, Hirokawa T, Hara M, et al Apigenin induces apoptosis by suppressing Bcl-xl and Mcl-1 simultaneously via signal transducer and activator of transcription 3 signaling in colon cancer. Int J Oncol. 2018;52:1661–1673. doi: 10.3892/ijo.2018.4308.] [[PubMed][Google Scholar]
  • 12. Vrhovac Madunić I, Madunić J, Antunović M, Paraždik M, Garaj-Vrhovac V, Breljak D, Marijanović I, Gajski GApigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:537–550. doi: 10.1007/s00210-018-1486-4.] [[PubMed][Google Scholar]
  • 13. Sun Q, Lu NN, Feng LApigetrin inhibits gastric cancer progression through inducing apoptosis and regulating ROS-modulated STAT3/JAK2 pathway. Biochem Biophys Res Commun. 2018;498:164–170. doi: 10.1016/j.bbrc.2018.02.009.] [[PubMed][Google Scholar]
  • 14. Xia Y, Yuan M, Li S, Thuan UT, Nguyen TT, Kang TW, Liao W, Lian S, Jung YDApigenin suppresses the IL-1β-induced expression of the urokinase-type plasminogen activator receptor by inhibiting MAPK-mediated AP-1 and NF-κB signaling in human bladder cancer T24 Cells. J Agric Food Chem. 2018;66:7663–7673. doi: 10.1021/acs.jafc.8b02351.] [[PubMed][Google Scholar]
  • 15. Souza RP, Bonfim-Mendonça PS, Gimenes F, Ratti BA, Kaplum V, Bruschi ML, Nakamura CV, Silva SO, Maria-Engler SS, Consolaro MEOxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid Med Cell Longev. 2017;2017(1512745) doi: 10.1155/2017/1512745.] [[Google Scholar]
  • 16. Zhou Z, Tang M, Liu Y, Zhang Z, Lu R, Lu JApigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs. 2017;28:446–456. doi: 10.1097/CAD.0000000000000479.] [[PubMed][Google Scholar]
  • 17. Shao H, Jing K, Mahmoud E, Huang H, Fang X, Yu CApigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther. 2013;12:2640–2650. doi: 10.1158/1535-7163.MCT-13-0066.] [[Google Scholar]
  • 18. Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta SApigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget. 2015;6:31216–31232. doi: 10.18632/oncotarget.5157.] [[Google Scholar]
  • 19. Yan X, Qi M, Li P, Zhan Y, Shao HApigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7(50) doi: 10.1186/s13578-017-0179-x.] [[Google Scholar]
  • 20. Verma AK, Laha B, Pandey M, Pal U, Ghosh M. Cholesterol-lowering drug, in combination with chromium chloride, induces early apoptotic signals in intracellular L. donovani amastigotes, leading to death. J Biosci. 2017;42:427–438. doi: 10.1007/s12038-017-9690-9.] [[PubMed]
  • 21. Ganta KK, Mandal A, Chaubey BDepolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. 2017;33:69–82. doi: 10.1007/s10565-016-9362-9.] [[PubMed][Google Scholar]
  • 22. Livak KJ, Schmittgen TDAnalysis of relative gene expression data using real time quantitative PCR and the 2(Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.] [[PubMed][Google Scholar]
  • 23. Wang J, Song C, Cao X, Li H, Cai H, Ma Y, Huang Y, Lan X, Lei C, Ma YmiR 208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. J Cell Physiol. 2019;234:3720–3729. doi: 10.1002/jcp.27146.] [[PubMed][Google Scholar]
  • 24. Zhong Y, Jin C, Gan J, Wang X, Shi Z, Xia X, Peng XApigenin attenuates patulin induced apoptosis in HEK293 cells by modulating ROS mediated mitochondrial dysfunction and caspase signal pathway. Toxicon. 2017;137:106–113. doi: 10.1016/j.toxicon.2017.07.018.] [[PubMed][Google Scholar]
  • 25. Xiang W, Yang CY, Bai LMCL 1 inhibition in cancer treatment. OncoTargets Ther. 2018;11:7301–7314. doi: 10.2147/OTT.S146228.] [[Google Scholar]
  • 26. Singel KL, Grzankowski KS, Khan A, Grimm MJ, D'Auria AC, Morrell K, Eng KH, Hylander B, Mayor PC, Emmons TR, et al Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br J Cancer. 2018 doi: 10.1038/s41416-018-0339-8.] [[Google Scholar]
  • 27. Liu N, Sheng X, Liu Y, Zhang X, Yu JIncreased CD70 expression is associated with clinical resistance to cisplatin-based chemotherapy and poor survival in advanced ovarian carcinomas. OncoTargets Ther. 2013;6:615–619. doi: 10.2147/OTT.S44445.] [[Google Scholar]
  • 28. Pieterse Z, Amaya-Padilla MA, Singomat T, Binju M, Madjid BD, Yu Y, Kaur POvarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol. 2019;106:117–126. doi: 10.1016/j.biocel.2018.11.012.] [[PubMed][Google Scholar]
  • 29. Pal MK, Jaiswar SP, Dwivedi A, Goyal S, Dwivedi VN, Pathak AK, Kumar V, Sankhwar PL, Ray RSSynergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): A ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anticancer Agents Med Chem. 2017;17:1721–1732. doi: 10.2174/1871520617666170425094549.] [[PubMed][Google Scholar]
  • 30. Balusamy SR, Perumalsamy H, Huq MA, Balasubramanian BAnti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines. Biomed Pharmacother. 2018;108:1835–1844. doi: 10.1016/j.biopha.2018.10.028.] [[PubMed][Google Scholar]
  • 31. Shah D, Das P, Alam MA, Mahajan N, Romero F, Shahid M, Singh H, Bhandari VMicroRNA 34a promotes endothelial dysfunction and mitochondrial mediated apoptosis in murine models of acute lung injury. Am J Respir Cell Mol Biol. 2019;60:465–477. doi: 10.1165/rcmb.2018-0194OC.] [[PubMed][Google Scholar]
  • 32. Dirks AJ, Leeuwenburgh CAging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med. 2004;36:27–39. doi: 10.1016/j.freeradbiomed.2003.10.003.] [[PubMed][Google Scholar]
  • 33. Cummings BS, Schnellmann RGCisplatin-induced renal cell apoptosis: Caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther. 2002;302:8–17. doi: 10.1152/ajprenal.00091.2017.] [[PubMed][Google Scholar]
  • 34. Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X, Yu C, Jiang X, Xu Y, Sun LABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2 signal transduction in human ovarian cancer cells. Int J Oncol. 2016;49:2507–2519. doi: 10.3892/ijo.2016.3733.] [[PubMed][Google Scholar]
  • 35. Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X, Xie L, Yang J, Yu H, Su J, et al ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol. 2018;53:1055–1068. doi: 10.3892/ijo.2018.4476.] [[Google Scholar]
  • 36. Cardenas C, Montagna MK, Pitruzzello M, Lima E, Mor G, Alvero ABAdipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells. Apoptosis. 2017;22:558–569. doi: 10.1007/s10495-016-1339-x.] [[PubMed][Google Scholar]
  • 37. Habata S, Iwasaki M, Sugio A, Suzuki M, Tamate M, Satohisa S, Tanaka R, Saito TBAG3-mediated Mcl-1 stabilization contributes to drug resistance via interaction with USP9X in ovarian cancer. Int J Oncol. 2016;49:402–410. doi: 10.3892/ijo.2016.3494.] [[PubMed][Google Scholar]
  • 38. Matsuura K, Huang NJ, Cocce K, Zhang L, Kornbluth SDownregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698–1706. doi: 10.1038/onc.2016.336.] [[Google Scholar]
  • 39. Dai Y, Jin S, Li X, Wang DThe involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget. 2017;8:1354–1368. doi: 10.18632/oncotarget.13817.] [[Google Scholar]
  • 40. O' Reilly E, Dhami SPS, Baev DV, Ortutay C, Halpin-McCormick A, Morrell R, Santocanale C, Samali A, Quinn J, O'Dwyer ME, et al Repression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. Sci Rep. 2018;8(15752) doi: 10.1038/s41598-018-33982-y.] [[Google Scholar]
  • 41. Tyson-Capper A, Gautrey HRegulation of Mcl-1 alternative splicing by hnRNP F, H1 and K in breast cancer cells. RNA Biol. 2018;15:1448–1457. doi: 10.1080/15476286.2018.1551692.] [[Google Scholar]
  • 42. Sugio A, Iwasaki M, Habata S, Mariya T, Suzuki M, Osogami H, Tamate M, Tanaka R, Saito TBAG3 upregulates Mcl-1 through downregulation of miR-29b to induce anticancer drug resistance in ovarian cancer. Gynecol Oncol. 2014;134:615–623. doi: 10.1016/j.ygyno.2014.06.024.] [[PubMed][Google Scholar]
  • 43. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, et al Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale. 2012;4:7021–7030. doi: 10.1039/c2nr32181e.] [[PubMed][Google Scholar]
  • 44. Goncharenko-Khaider N, Matte I, Lane D, Rancourt C, Piché AOvarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis. Mol Cancer. 2012;11(84) doi: 10.1186/1476-4598-11-84.] [[Google Scholar]
  • 45. Yuan Z, Cao K, Lin C, Li L, Liu HY, Zhao XY, Liu L, Deng HX, Li J, Nie CL, et al The p53 upregulated modulator of apoptosis (PUMA) chemosensitizes intrinsically resistant ovarian cancer cells to cisplatin by lowering the threshold set by Bcl-x(L) and Mcl-1. Mol Med. 2011;17:1262–1274. doi: 10.2119/molmed.2011.00176.] [[Google Scholar]
  • 46. Shan S, Shi J, Yang P, Jia B, Wu H, Zhang X, Li ZApigenin restrains colon cancer cell proliferation via targeted blocking of pyruvate kinase M2 dependent glycolysis. J Agric Food Chem. 2017;65:8136–8144. doi: 10.1021/acs.jafc.7b02757.] [[PubMed][Google Scholar]
  • 47. Perrott KM, Wiley CD, Desprez PY, Campisi JApigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience. 2017;39:161–173. doi: 10.1007/s11357-017-9970-1.] [[Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.