Vascular endothelial growth factor inhibits bone morphogenetic protein 2 expression in rat mesenchymal stem cells.
Journal: 2010/September - Tissue Engineering - Part A.
ISSN: 1937-335X
Abstract:
BACKGROUND
While several studies report that bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) can act synergistically to improve bone tissue engineering, others suggest that VEGF inhibits osteogenesis. The purpose of these experiments was therefore to evaluate the effect of dual transfection of these growth factors and potential mechanisms of interaction on gene expression and osteogenesis in vitro and in vivo.
METHODS
Marrow-derived mesenchymal stem cells (MSCs) were exposed to recombinant VEGF protein or transfected with adenoviruses encoding BMP2, VEGF, or LacZ in a variety of ratios. Alterations in gene and protein expression in vitro as well as bone formation in vivo were assessed.
RESULTS
MSC exposure to AdV-VEGF or recombinant VEGF inhibited BMP2 mRNA expression, protein production, and MSC differentiation. Coculture experiments revealed that BMP2 suppression occurs through both an autocrine and a paracrine mechanism, occurring at the transcriptional level. Compared to controls, cotransfection of VEGF and BMP2 transgenes prevented ectopic bone formation in vivo.
CONCLUSIONS
VEGF is a potent inhibitor of BMP2 expression in MSCs, and supplementation or overexpression of VEGF inhibits osteogenesis in vitro and ectopic bone formation in vivo. Strategies to utilize MSCs in bone tissue engineering therefore require careful optimization and precise delivery of growth factors for maximal bone formation.
Relations:
Content
Citations
(10)
References
(36)
Grants
(4)
Chemicals
(2)
Genes
(2)
Organisms
(6)
Processes
(6)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Tissue Eng Part A 16(2): 653-662

Vascular Endothelial Growth Factor Inhibits Bone Morphogenetic Protein 2 Expression in Rat Mesenchymal Stem Cells

Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.
Corresponding author.
Address correspondence to: Babak J. Mehrara, M.D., FACS, 1275 York Ave., Room MRI 1005, New York, NY 10065. E-mail:gro.ccksm@bararhem
Address correspondence to: Babak J. Mehrara, M.D., FACS, 1275 York Ave., Room MRI 1005, New York, NY 10065. E-mail:gro.ccksm@bararhem
Received 2009 Jun 24; Accepted 2009 Sep 14.

Abstract

Introduction: While several studies report that bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) can act synergistically to improve bone tissue engineering, others suggest that VEGF inhibits osteogenesis. The purpose of these experiments was therefore to evaluate the effect of dual transfection of these growth factors and potential mechanisms of interaction on gene expression and osteogenesis in vitro and in vivo. Methods: Marrow-derived mesenchymal stem cells (MSCs) were exposed to recombinant VEGF protein or transfected with adenoviruses encoding BMP2, VEGF, or LacZ in a variety of ratios. Alterations in gene and protein expression in vitro as well as bone formation in vivo were assessed. Results: MSC exposure to AdV-VEGF or recombinant VEGF inhibited BMP2 mRNA expression, protein production, and MSC differentiation. Coculture experiments revealed that BMP2 suppression occurs through both an autocrine and a paracrine mechanism, occurring at the transcriptional level. Compared to controls, cotransfection of VEGF and BMP2 transgenes prevented ectopic bone formation in vivo. Conclusion:VEGF is a potent inhibitor of BMP2 expression in MSCs, and supplementation or overexpression of VEGF inhibits osteogenesis in vitro and ectopic bone formation in vivo. Strategies to utilize MSCs in bone tissue engineering therefore require careful optimization and precise delivery of growth factors for maximal bone formation.

Abstract

References

  • 1. Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143.[PubMed]
  • 2. Huss F.R. Kratz G. Mammary epithelial cell and adipocyte co-culture in a 3-D matrix: the first step towards tissue-engineered human breast tissue. Cells Tissues Organs. 2001;169:361.[PubMed]
  • 3. Baker B.M. Mauck R.L. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28:1967.
  • 4. Hoerstrup S.P. Kadner A. Melnitchouk S. Trojan A. Eid K. Tracy J. Sodian R. Visjager J.F. Kolb S.A. Grunenfelder J. Zund G. Turina M.I. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation. 2002;106:I143.[PubMed]
  • 5. Yang D. Guo T. Nie C. Morris S.F. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Ann Plast Surg. 2009;62:297.[PubMed]
  • 6. Alhadlaq A. Mao J.J. Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am. 2005;87:936.[PubMed]
  • 7. Liu P. Deng Z. Han S. Liu T. Wen N. Lu W. Geng X. Huang S. Jin Y. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs. 2008;32:925.[PubMed]
  • 8. Yamasaki T. Deie M. Shinomiya R. Yasunaga Y. Yanada S. Ochi M. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs. 2008;32:519.[PubMed]
  • 9. Wu B. Zheng Q. Guo X. Wu Y. Wang Y. Cui F. Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide. Biomed Mater. 2008;3:44111.[PubMed]
  • 10. Oliveira S.M. Amaral I.F. Barbosa M.A. Teixeira C.C. Engineering endochondral bone: in vitro studies. Tissue Eng Part A. 2009;15:625.
  • 11. Oda M. Kuroda S. Konda H. Kasugai S. Hydroxyapatite fiber material with BMP-2 gene induces ectopic bone formation. J Biomed Mater Res B Appl Biomater. 2009;90:101.[PubMed]
  • 12. Lee D.H. Park B.J. Lee M.S. Lee J.W. Kim J.K. Yang H.C. Park J.C. Chemotactic migration of human mesenchymal stem cells and MC3T3-E1 osteoblast-like cells induced by COS-7 cell line expressing rhBMP-7. Tissue Eng. 2006;12:1577.[PubMed]
  • 13. Minamide A. Tamaki T. Kawakami M. Hashizume H. Yoshida M. Sakata R. Experimental spinal fusion using sintered bovine bone coated with type I collagen and recombinant human bone morphogenetic protein-2. Spine. 24:1863–1870. ; discussion 71–72, 1999. [[PubMed]
  • 14. Sheehan J.P. Sheehan J.M. Seeherman H. Quigg M. Helm G.A. The safety and utility of recombinant human bone morphogenetic protein-2 for cranial procedures in a nonhuman primate model. J Neurosurg. 2003;98:125.[PubMed]
  • 15. Nilsson O.S. Urist M.R. Dawson E.G. Schmalzried T.P. Finerman G.A. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg Br. 1986;68:635.[PubMed]
  • 16. Peterson B. Zhang J. Iglesias R. Kabo M. Hedrick M. Benhaim P. Lieberman J.R. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 2005;11:120.[PubMed]
  • 17. Maes C. Carmeliet P. Moermans K. Stockmans I. Smets N. Collen D. Bouillon R. Carmeliet G. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev. 2002;111:61.[PubMed]
  • 18. Peng H. Usas A. Olshanski A. Ho A.M. Gearhart B. Cooper G.M. Huard J. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res. 2005;20:2017.[PubMed]
  • 19. Peng H. Wright V. Usas A. Gearhart B. Shen H.C. Cummins J. Huard J. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 2002;110:751.
  • 20. Zelzer E. Olsen B.R. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol. 2005;65:169.[PubMed]
  • 21. Lohela M. Bry M. Tammela T. Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21:154.[PubMed]
  • 22. Okuyama H. Krishnamachary B. Zhou Y.F. Nagasawa H. Bosch-Marce M. Semenza G.L. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem. 2006;281:15554.[PubMed]
  • 23. Mehrara B.J. Saadeh P.B. Steinbrech D.S. Dudziak M. Spector J.A. Greenwald J.A. Gittes G.K. Longaker M.T. Adenovirus-mediated gene therapy of osteoblasts in vitro and in vivo. J Bone Miner Res. 1999;14:1290.[PubMed]
  • 24. Feng J.Q. Harris M.A. Ghosh-Choudhury N. Feng M. Mundy G.R. Harris S.E. Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim Biophys Acta. 1994;1218:221.[PubMed]
  • 25. Clauss M. Gerlach M. Gerlach H. Brett J. Wang F. Familletti P.C. Pan Y.C. Olander J.V. Connolly D.T. Stern D. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med. 1990;172:1535.
  • 26. Senger D.R. Connolly D.T. Van de Water L. Feder J. Dvorak H.F. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 1990;50:1774.[PubMed]
  • 27. Senger D.R. Perruzzi C.A. Feder J. Dvorak H.F. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46:5629.[PubMed]
  • 28. Li G. Corsi-Payne K. Zheng B. Usas A. Peng H. Huard J. The dose of growth factors influences the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4–induced ectopic bone formation. Tissue Eng Part A. 2009;15:2123.
  • 29. Geiger F. Lorenz H. Xu W. Szalay K. Kasten P. Claes L. Augat P. Richter W. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone. 2007;41:516.[PubMed]
  • 30. Patel Z.S. Young S. Tabata Y. Jansen J.A. Wong M.E. Mikos A.G. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008;43:931.
  • 31. Hayami T. Funaki H. Yaoeda K. Mitui K. Yamagiwa H. Tokunaga K. Hatano H. Kondo J. Hiraki Y. Yamamoto T. Duong le T. Endo N. Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol. 2003;30:2207.[PubMed]
  • 32. Moses M.A. Sudhalter J. Langer R. Identification of an inhibitor of neovascularization from cartilage. Science. 1990;248:1408.[PubMed]
  • 33. Wedge S.R. Ogilvie D.J. Dukes M. Kendrew J. Chester R. Jackson J.A. Boffey S.J. Valentine P.J. Curwen J.O. Musgrove H.L. Graham G.A. Hughes G.D. Thomas A.P. Stokes E.S. Curry B. Richmond G.H. Wadsworth P.F. Bigley A.L. Hennequin L.F. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645.[PubMed]
  • 34. Oswald J. Boxberger S. Jorgensen B. Feldmann S. Ehninger G. Bornhauser M. Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377.[PubMed]
  • 35. Gerber H.P. Vu T.H. Ryan A.M. Kowalski J. Werb Z. Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623.[PubMed]
  • 36. Kuhnert F. Mancuso M.R. Hampton J. Stankunas K. Asano T. Chen C.Z. Kuo C.J. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135:3989.[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.