Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli.
Journal: 1977/February - Bacteriological reviews
ISSN: 0005-3678
PUBMED: 795416
Relations:
Content
Citations
(630)
References
(241)
Chemicals
(4)
Genes
(1)
Organisms
(2)
Processes
(7)
Similar articles
Articles by the same authors
Discussion board
Bacteriol Rev 40(4): 869-907

Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (6.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adler HI, Fisher WD, Hardigree AA, Stapleton GE. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli. J Bacteriol. 1966 Feb;91(2):737–742.[PMC free article] [PubMed] [Google Scholar]
  • ADLER HI, HARDIGREE AA. ANALYSIS OF A GENE CONTROLLING CELL DIVISION AND SENSITIVITY TO RADIATION IN ESCHERICHIA COLI. J Bacteriol. 1964 Mar;87:720–726.[PMC free article] [PubMed] [Google Scholar]
  • ADLER HI, HARDIGREE AA. POSTIRRADIATION GROWTH, DIVISION, AND RECOVERY IN BACTERIA. Radiat Res. 1965 May;25:92–102. [PubMed] [Google Scholar]
  • ALPER T, GILLIES NE. Restoration of Escherichia coli strain B after irradiation: its dependence on suboptimal growth conditions. J Gen Microbiol. 1958 Apr;18(2):461–472. [PubMed] [Google Scholar]
  • Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2281–2285.[PMC free article] [PubMed] [Google Scholar]
  • ANDERSON EH. Heat reactivation of ultraviolet-inactivated bacteria. J Bacteriol. 1951 Apr;61(4):389–394.[PMC free article] [PubMed] [Google Scholar]
  • Apte BN, Rhodes H, Zipser D. Mutation blocking the specific degradation of reinitiation polypeptides in E. coli. Nature. 1975 Sep 25;257(5524):329–331. [PubMed] [Google Scholar]
  • Bachmann BJ, Low KB, Taylor AL. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167.[PMC free article] [PubMed] [Google Scholar]
  • Baltimore D. Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes? Nature. 1974 Mar 29;248(447):409–411. [PubMed] [Google Scholar]
  • Beckwith J, Rossow P. Analysis of genetic regulatory mechanisms. Annu Rev Genet. 1974;8:1–13. [PubMed] [Google Scholar]
  • Benbow RM, Zuccarelli AJ, Sinsheimer RL. A role for single-strand breaks in bacteriophage phi-X174 genetic recombination. J Mol Biol. 1974 Sep 25;88(3):629–651. [PubMed] [Google Scholar]
  • BEUKERS R, BERENDS W. Isolation and identification of the irradiation product of thymine. Biochim Biophys Acta. 1960 Jul 15;41:550–551. [PubMed] [Google Scholar]
  • Billen D. Replication of the bacterial chromosome: location of new initiation sites after irradiation. J Bacteriol. 1969 Mar;97(3):1169–1175.[PMC free article] [PubMed] [Google Scholar]
  • Blanco M, Devoret R. Repair mechanisms involved in prophage reactivation and UV reactivation of UV-irradiated phage lambda. Mutat Res. 1973 Mar;17(3):293–305. [PubMed] [Google Scholar]
  • Blanco M, Levine A, Devoret R. IexB: a new gene governing radiation sensitivity and lysogenic induction in Escherichia coli K12. Basic Life Sci. 1975;5A:379–382. [PubMed] [Google Scholar]
  • Bockrath R, Cheung MK. The role of nutrient broth supplementation in UV mutagenesis of E. coli. Mutat Res. 1973 Jul;19(1):23–32. [PubMed] [Google Scholar]
  • Bockstahler LE, Lytle CD, Stafford JE, Haynes KF. Ultraviolet enhanced reactivation of a human virus: effect of delayed infection. Mutat Res. 1976 Jun;35(2):189–198. [PubMed] [Google Scholar]
  • Bockstahler LE, Lytle CD. X-ray-enhanced reactivation of ultraviolet-irradiated human virus. J Virol. 1971 Oct;8(4):601–602.[PMC free article] [PubMed] [Google Scholar]
  • Bonura T, Smith KC. Quantitative evidence for enzymatically-indeced DNA double-strand breaks as lethal lesions in UV irradiated pol+ and polA1 strains of E. coli K-12. Photochem Photobiol. 1975 Dec;22(6):243–248. [PubMed] [Google Scholar]
  • Bonura T, Smith KC. Enzymatic production of deoxyribonucleic acid double-strand breaks after ultraviolet irradiation of Escherichia coli K-12. J Bacteriol. 1975 Feb;121(2):511–517.[PMC free article] [PubMed] [Google Scholar]
  • Borek E, Ryan A. THE TRANSFER OF IRRADIATION-ELICITED INDUCTION IN A LYSOGENIC ORGANISM. Proc Natl Acad Sci U S A. 1958 May;44(5):374–377.[PMC free article] [PubMed] [Google Scholar]
  • BOYCE RP, HOWARD-FLANDERS P. RELEASE OF ULTRAVIOLET LIGHT-INDUCED THYMINE DIMERS FROM DNA IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Feb;51:293–300.[PMC free article] [PubMed] [Google Scholar]
  • Boyle JM, Paterson MC, Setlow RB. Excision-repair properties of an Escherichia coli mutant deficient in DNA polymerase. Nature. 1970 May 23;226(5247):708–710. [PubMed] [Google Scholar]
  • Braun A, Grossman L. An endonuclease from Escherichia coli that acts preferentially on UV-irradiated DNA and is absent from the uvrA and uvrB mutants. Proc Natl Acad Sci U S A. 1974 May;71(5):1838–1842.[PMC free article] [PubMed] [Google Scholar]
  • Bresler SE, Mosevitsky MI, Vyacheslavov LG. Mutations as possible replication errors in bacteria growing under conditions of thymine deficiency. Mutat Res. 1973 Sep;19(3):281–293. [PubMed] [Google Scholar]
  • Bridges BA. A note on the mechanism of UV mutagenesis in Escherichia coli. Mutat Res. 1966 Aug;3(4):273–279. [PubMed] [Google Scholar]
  • Bridges BA. Mechanisms of radiation mutagenesis in cellular and subcellular systems. Annu Rev Nucl Sci. 1969;19:139–178. [PubMed] [Google Scholar]
  • Bridges BA, Dennis RE, Munson RJ. Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics. 1967 Dec;57(4):897–908.[PMC free article] [PubMed] [Google Scholar]
  • Bridges BA. Genetic and physiological separation of the repair and mutagenic functions of the exrA gene in Escherichia coli. Genetics. 1973 Apr;73(Suppl):123–129. [PubMed] [Google Scholar]
  • Bridges BA, Law J, Munson RJ. Mutagenesis in Escherichia coli. II. Evidence for a common pathway for mutagenesis by ultraviolet light, ionizing radiation and thymine deprivation. Mol Gen Genet. 1968;103(3):266–273. [PubMed] [Google Scholar]
  • Bridges BA, Mottershead R. RecA + -dependent mutagenesis occurring before DNA replication in UV- and -irradiated Escherichia coli. Mutat Res. 1971 Sep;13(1):1–8. [PubMed] [Google Scholar]
  • Bridges BA, Mottershead RP. Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Mol Gen Genet. 1976 Feb 27;144(1):53–58. [PubMed] [Google Scholar]
  • Bridges BA, Munson RJ. Excision-repair of DNA damage in an auxotrophic strain of Escherichia coli. Biochem Biophys Res Commun. 1966 Feb 3;22(3):268–273. [PubMed] [Google Scholar]
  • Bridges BA, Rothwell MA, Green MH. Repair processes and dose-response curves in ultraviolet mutagenesis of bacteria. An Acad Bras Cienc. 1973;45(Suppl):203–209. [PubMed] [Google Scholar]
  • Britten RJ, Davidson EH. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. [PubMed] [Google Scholar]
  • Brooks K, Clark AJ. Behavior of lambda bacteriophage in a recombination deficienct strain of Escherichia coli. J Virol. 1967 Apr;1(2):283–293.[PMC free article] [PubMed] [Google Scholar]
  • Buhl SN, Setlow RB, Regan JD. Recovery of the ability to synthesize DNA in segments of normal size at long times after ultraviolet irradiation of human cells. Biophys J. 1973 Dec;13(12):1265–1275.[PMC free article] [PubMed] [Google Scholar]
  • Bush JW, Markovitz A. The Genetic Basis for Mucoidy and Radiation Sensitivity in capR (lon) Mutants of E. coli K-12. Genetics. 1973 Jun;74(2):215–225.[PMC free article] [PubMed] [Google Scholar]
  • Castellazzi M, George J, Buttin G. Prophage induction and cell division in E. coli. I. Further characterization of the thermosensitive mutation tif-1 whose expression mimics the effect of UV irradiation. Mol Gen Genet. 1972;119(2):139–152. [PubMed] [Google Scholar]
  • Castellazzi M, George J, Buttin G. [Prophage induction and cell division in E. coli. II. Linked (recA, zab) and unlinked (lex) suppressors of tif-1-mediated induction and filamentation]. Mol Gen Genet. 1972;119(2):153–174. [PubMed] [Google Scholar]
  • Cheung MK, Bockrath RC. On the specificity of UV mutagenesis in E. coli. Mutat Res. 1970 Nov;10(5):521–523. [PubMed] [Google Scholar]
  • Clark AJ. Toward a metabolic interpretation of genetic recombination of E. coli and its phages. Annu Rev Microbiol. 1971;25:437–464. [PubMed] [Google Scholar]
  • Clark AJ. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. [PubMed] [Google Scholar]
  • CLARK AJ, MARGULIES AD. ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1965 Feb;53:451–459.[PMC free article] [PubMed] [Google Scholar]
  • Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. [PubMed] [Google Scholar]
  • Cleaver JE. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci U S A. 1969 Jun;63(2):428–435.[PMC free article] [PubMed] [Google Scholar]
  • Cleaver JE, Bootsma D. Xeroderma pigmentosum: biochemical and genetic characteristics. Annu Rev Genet. 1975;9:19–38. [PubMed] [Google Scholar]
  • Coleman MS, Hutton JJ, De Simone P, Bollum FJ. Terminal deoxyribonucleotidyl transferase in human leukemia. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4404–4408.[PMC free article] [PubMed] [Google Scholar]
  • Cooper PK, Hanawalt PC. Heterogeneity of patch size in repair replicated DNA in Escherichia coli. J Mol Biol. 1972 Jun 14;67(1):1–10. [PubMed] [Google Scholar]
  • Cooper PK, Hanawalt PC. Role of DNA polymerase I and the rec system in excision-repair in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1156–1160.[PMC free article] [PubMed] [Google Scholar]
  • D'Ambrosio SM, Setlow RB. Enhancement of postreplication repair in Chinese hamster cells. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2396–2400.[PMC free article] [PubMed] [Google Scholar]
  • Defais M, Caillet-Fauquet P, Fox MS, Radman M. Induction kinetics of mutagenic DNA repair activity in E. coli following ultraviolet irradiation. Mol Gen Genet. 1976 Oct 18;148(2):125–130. [PubMed] [Google Scholar]
  • Defais M, Fauquet P, Radman M, Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. [PubMed] [Google Scholar]
  • DELAPORTE B. La restauration par voisinage chez des bactéries irradiées par des rayons X. Ann Inst Pasteur (Paris) 1956 Nov;91(5):727–735. [PubMed] [Google Scholar]
  • De Lucia P, Cairns J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1164–1166. [PubMed] [Google Scholar]
  • DEMEREC M, CAHN E. Studies of mutability in nutritionally deficient strains of Escherichia coli. I. Genetic analysis of five auxotrophic strains. J Bacteriol. 1953 Jan;65(1):27–36.[PMC free article] [PubMed] [Google Scholar]
  • Devoret R, Blanco M, George J, Radman M. Recovery of phage lambda from ultraviolet damage. Basic Life Sci. 1975;5A:155–171. [PubMed] [Google Scholar]
  • Devoret R, George J. Induction indirecte du prophage lambda par le rayonnement ultraviolet. Mutat Res. 1967 Nov-Dec;4(6):713–734. [PubMed] [Google Scholar]
  • Donch JJ, Greenberg J. The effect of lex on UV sensitivity, filament formation and lambda induction in ion mutants of Escherichia coli. Mol Gen Genet. 1974;128(4):277–281. [PubMed] [Google Scholar]
  • Donch JJ, Greenberg J. Suppression of filamentation in a new lex mutant by a linked (lexA) mutation in Escherichia coli. Mutat Res. 1976 Mar;34(3):533–538. [PubMed] [Google Scholar]
  • Donch J, Greenberg J, Green MH. Repression of induction by U.V. of lambda phage by exrA mutations in Escherichia coli. Genet Res. 1970 Feb;15(1):87–97. [PubMed] [Google Scholar]
  • Doubleday OP, Bridges BA, Green MH. Mutagenic DNA repair in Escherichia coli. II. Factors affecting loss of photoreversibility of UV induced mutations. Mol Gen Genet. 1975 Oct 3;140(3):221–230. [PubMed] [Google Scholar]
  • Doudney CO. The two-lesion hypothesis for UV-induced mutation in relation to recovery of capacity for DNA replication. Basic Life Sci. 1975;5A:389–392. [PubMed] [Google Scholar]
  • Doudney CO. Complexity of the ultraviolet mutation frequency response curve in Escherichia coli B/r: SOS induction, one-lesion and two-lesion mutagenesis. J Bacteriol. 1976 Dec;128(3):815–826.[PMC free article] [PubMed] [Google Scholar]
  • Doudney CO, Young CS. Ultraviolet Light Induced Mutation and Deoxyribonucleic Acid Replication in Bacteria. Genetics. 1962 Sep;47(9):1125–1138.[PMC free article] [PubMed] [Google Scholar]
  • Drabble WT, Stocker BA. R (transmissible drug-resistance) factors in Salmonella typhimurium: pattern of transduction by phage P22 and ultraviolet-protection effect. J Gen Microbiol. 1968 Aug;53(1):109–123. [PubMed] [Google Scholar]
  • Drake JW, Baltz RH. The biochemistry of mutagenesis. Annu Rev Biochem. 1976;45:11–37. [PubMed] [Google Scholar]
  • Emmerson PT. Recombination deficient mutants of Escherichia coli K12 that map between thy A and argA. Genetics. 1968 Sep;60(1):19–30.[PMC free article] [PubMed] [Google Scholar]
  • Eyfjörd JE, Green MH, Bridges BA. Mutagenic DNA repair in Escherichia coli: conditions for error-free filling of daughter strand gaps. J Gen Microbiol. 1975 Dec;91(2):369–375. [PubMed] [Google Scholar]
  • Caillet-Fauquet P, Defais M. UV reactivation of phage lambda in a polA mutant of E. coli. Mutat Res. 1972 Jul;15(3):353–355. [PubMed] [Google Scholar]
  • Ganesan AK. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J Mol Biol. 1974 Jul 25;87(1):103–119. [PubMed] [Google Scholar]
  • Ganesan AK, Seawell PC. The effect of lexA and recF mutations on post-replication repair and DNA synthesis in Escherichia coli K-12. Mol Gen Genet. 1975 Dec 1;141(3):189–205. [PubMed] [Google Scholar]
  • Gellert M, Bullock ML. DNA ligase mutants of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1580–1587.[PMC free article] [PubMed] [Google Scholar]
  • George DL, Witkin EM. Slow excision repair in an mfd mutant of Escherichia coli B/r. Mol Gen Genet. 1974;133(4):283–291. [PubMed] [Google Scholar]
  • George DL, Witkin EM. Ultraviolet light-induced responses of an mfd mutant of Escherichia coli B/r having a slow rate of dimer excision. Mutat Res. 1975 Jun;28(3):347–354. [PubMed] [Google Scholar]
  • George J, Castellazzi M, Buttin G. Prophage induction and cell division in E. coli. III. Mutations sfiA and sfiB restore division in tif and lon strains and permit the expression of mutator properties of tif. Mol Gen Genet. 1975 Oct 22;140(4):309–332. [PubMed] [Google Scholar]
  • George J, Devoret R. Conjugal transfer of UV-damaged F-prime sex factors and indirect induction of prophage- . Mol Gen Genet. 1971;111(2):103–119. [PubMed] [Google Scholar]
  • George J, Devoret R, Radman M. Indirect ultraviolet-reactivation of phage lambda. Proc Natl Acad Sci U S A. 1974 Jan;71(1):144–147.[PMC free article] [PubMed] [Google Scholar]
  • Goldberg AL, Dice JF. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. [PubMed] [Google Scholar]
  • Goldberg AL, St John AC. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. [PubMed] [Google Scholar]
  • GOLDTHWAIT D, JACOB F. SUR LE M'ECANISME DE L'INDUCTION DU D'EVELOPPEMENT DU PROPHAGE CHEZ LES BACT'ERIES LYSOG'ENES. C R Hebd Seances Acad Sci. 1964 Jul 20;259:661–664. [PubMed] [Google Scholar]
  • Gottesman MM, Hicks ML, Gellert M. Genetics and function of DNA ligase in Escherichia coli. J Mol Biol. 1973 Jul 15;77(4):531–547. [PubMed] [Google Scholar]
  • Goze A, Sarsin A, Moulé Y, Devoret R. Induction and mutagenesis of prophage lambda in Escherichia coli K12 by metabolites of aflatoxin B1. Mutat Res. 1975 Apr;28(1):1–7. [PubMed] [Google Scholar]
  • Green MH, Greenberg J, Donch J. Effect of a recA gene on cell division and capsular polysaccharide production in a lon strain of Escherichia coli. Genet Res. 1969 Oct;14(2):159–162. [PubMed] [Google Scholar]
  • Greenberg J, Berends LJ, Donch J, Green MH. exrB: a malB-linked gene in Escherichia coli B involved in sensitivity to radiation and filament formation. Genet Res. 1974 Apr;23(2):175–184. [PubMed] [Google Scholar]
  • Greenberg J, Berends L, Donch J, Johnson B. Reversion studies with exrB in Escherichia coli. Genet Res. 1975 Apr;25(2):109–117. [PubMed] [Google Scholar]
  • Greenberg J, Donch J, Berends L. The dominance of exrB over exrB+ in heterodiploids of Escherichia coli. Genet Res. 1975 Feb;25(1):39–44. [PubMed] [Google Scholar]
  • Gross J, Gross M. Genetic analysis of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1166–1168. [PubMed] [Google Scholar]
  • Grossman L, Braun A, Feldberg R, Mahler I. Enzymatic repair of DNA. Annu Rev Biochem. 1975;44:19–43. [PubMed] [Google Scholar]
  • Gudas LJ. The induction of protein X in DNA repair and cell division mutants of Escherichia coli. J Mol Biol. 1976 Jul 5;104(3):567–587. [PubMed] [Google Scholar]
  • Gudas LJ, Pardee AB. Model for regulation of Escherichia coli DNA repair functions. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2330–2334.[PMC free article] [PubMed] [Google Scholar]
  • Gudas LJ, Pardee AB. DNA synthesis inhibition and the induction of protein X in Escherichia coli. J Mol Biol. 1976 Mar 15;101(4):459–477. [PubMed] [Google Scholar]
  • Hanawalt PC. Molecular mechanisms involved in DNA repair. Genetics. 1975 Jun;79 (Suppl):179–197. [PubMed] [Google Scholar]
  • Hanawalt P. Repair processes in diverse systems: overview. Basic Life Sci. 1975;5B:503–506. [PubMed] [Google Scholar]
  • Hart RW, Setlow RB. Direct evidence that pyrimidine dimers in DNA result in neoplastic transformation. Basic Life Sci. 1975;5B:719–724. [PubMed] [Google Scholar]
  • Hellman KB, Haynes KF, Bockstahler LE. Radiation-enhanced survival of a human virus in normal and malignant rat cells. Proc Soc Exp Biol Med. 1974 Jan;145(1):255–262. [PubMed] [Google Scholar]
  • Hertman I, Luria SE. Transduction studies on the role of a rec+ gene in the ultraviolet induction of prophage lambda. J Mol Biol. 1967 Jan 28;23(2):117–133. [PubMed] [Google Scholar]
  • Hill RF. Ultraviolet-induced lethality and reversion to prototrophy in Escherichia coli strains with normal and reduced dark repair ability. Photochem Photobiol. 1965 Jun;4(3):563–568. [PubMed] [Google Scholar]
  • Hill RF, Nestmann ER. Effect of the recC gene in Escherichia coli on frequencies of ultraviolet-induced mutants. Mutat Res. 1973 Jan;17(1):27–36. [PubMed] [Google Scholar]
  • Hirota Y, Ryter A, Jacob F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol. 1968;33:677–693. [PubMed] [Google Scholar]
  • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975 Jan 24;187(4173):226–232. [PubMed] [Google Scholar]
  • Horii Z, Clark AJ. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. [PubMed] [Google Scholar]
  • HOWARD BD, TESSMAN I. IDENTIFICATION OF THE ALTERED BASES IN MUTATED SINGLE-STRANDED DNA. 3. MUTAGENESIS BY ULTRAVIOLET LIGHT. J Mol Biol. 1964 Aug;9:372–375. [PubMed] [Google Scholar]
  • Howard-Flanders P. Repair by genetic recombination in bacteria: overview. Basic Life Sci. 1975;5A:265–274. [PubMed] [Google Scholar]
  • Howard-Flanders P, Boyce RP. DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat Res. 1966;(Suppl):156+–156+. [PubMed] [Google Scholar]
  • HOWARD-FLANDERS P, SIMSON E, THERIOT L. A LOCUS THAT CONTROLS FILAMENT FORMATION AND SENSITIVITY TO RADIATION IN ESCHERICHIA COLI K-12. Genetics. 1964 Feb;49:237–246.[PMC free article] [PubMed] [Google Scholar]
  • Howard-Flanders P, Rupp WD, Wilkins BM, Cole RS. DNA replication and recombination after UV irradiation. Cold Spring Harb Symp Quant Biol. 1968;33:195–207. [PubMed] [Google Scholar]
  • Howard-Flanders P, Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150.[PMC free article] [PubMed] [Google Scholar]
  • Howarth S. Increase in frequency of ultraviolet-induced mutation brought about by the colicine factor, col-I in Salmonella typhimurium. Mutat Res. 1966 Apr;3(2):129–134. [PubMed] [Google Scholar]
  • Hull RA. Effect of tsl mutations on Col E1 expression in a recA strain of Escherichia coli K-12. J Bacteriol. 1975 Aug;123(2):775–776.[PMC free article] [PubMed] [Google Scholar]
  • Ichikawa-Ryo H, Kondo S. Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J Mol Biol. 1975 Sep 5;97(1):77–92. [PubMed] [Google Scholar]
  • Ikenaga M, Ichikawa-Ryo H, Kondo S. The major cause of inactivation and mutation by 4-nitroquinoline 1-oixde in Escherichia coli: excisable 4NQO-purine adducts. J Mol Biol. 1975 Feb 25;92(2):341–356. [PubMed] [Google Scholar]
  • Inouye M. Pleiotropic effect of the rec A gene of Escherichia coli: uncoupling of cell division from deoxyribonucleic acid replication. J Bacteriol. 1971 May;106(2):539–542.[PMC free article] [PubMed] [Google Scholar]
  • Inouye M, Guthrie JP. A mutation which changes a membrane protein of E. coli. Proc Natl Acad Sci U S A. 1969 Nov;64(3):957–961.[PMC free article] [PubMed] [Google Scholar]
  • Inouye M, Pardee AB. Changes of membrane proteins and their relation to deoxyribonucleic acid synthesis and cell division of Escherichia coli. J Biol Chem. 1970 Nov 10;245(21):5813–5819. [PubMed] [Google Scholar]
  • Iyer VN, Rupp WD. Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions. Biochim Biophys Acta. 1971 Jan 1;228(1):117–126. [PubMed] [Google Scholar]
  • JACOB F. Mutation d'un bactériophage induite par l'irradiation des seules bactéries-hotes avant l'infection. C R Hebd Seances Acad Sci. 1954 Feb 8;238(6):732–734. [PubMed] [Google Scholar]
  • KANAZIR D. The apparent mutagenicity of thymine deficiency. Biochim Biophys Acta. 1958 Oct;30(1):20–23. [PubMed] [Google Scholar]
  • Kanner L, Hanawalt P. Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):149–155. [PubMed] [Google Scholar]
  • Kantor GJ, Deering RA. Ultraviolet radiation studies of filamentous Escherichia coli B. J Bacteriol. 1966 Oct;92(4):1062–1069.[PMC free article] [PubMed] [Google Scholar]
  • Kelner A. Effect of Visible Light on the Recovery of Streptomyces Griseus Conidia from Ultra-violet Irradiation Injury. Proc Natl Acad Sci U S A. 1949 Feb;35(2):73–79.[PMC free article] [PubMed] [Google Scholar]
  • Kelner A. PHOTOREACTIVATION OF ULTRAVIOLET-IRRADIATED ESCHERICHIA COLI, WITH SPECIAL REFERENCE TO THE DOSE-REDUCTION PRINCIPLE AND TO ULTRAVIOLET-INDUCED MUTATION. J Bacteriol. 1949 Oct;58(4):511–522.[PMC free article] [PubMed] [Google Scholar]
  • Kirby EP, Jacob F, Goldthwait DA. Prophage induction and filament formation in a mutant strain of Escherichia coli. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1903–1910.[PMC free article] [PubMed] [Google Scholar]
  • Kirby EP, Ruff WL, Goldthwait DA. Cell division and prophage induction in Escherichia coli: effects of pantoyl lactone and various furan derivatives. J Bacteriol. 1972 Aug;111(2):447–453.[PMC free article] [PubMed] [Google Scholar]
  • Kondo S. Evidence that mutations are induced by errors in repair and replication. Genetics. 1973 Apr;73(Suppl):109–102. [PubMed] [Google Scholar]
  • Kondo S, Ichikawa H. Evidence that pretreatment of Escherichia coli cells with N-methyl-N'-nitro-N-nitrosoguanidine enhances mutability of subsequently infecting phage lambda. Mol Gen Genet. 1973 Nov 22;126(4):319–324. [PubMed] [Google Scholar]
  • Kondo S, Ichikawa H, Iwo K, Kato T. Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities. Genetics. 1970 Oct;66(2):187–217.[PMC free article] [PubMed] [Google Scholar]
  • LATARJET R. Induction, par les rayons X, de la production d'un bactériophage chez B. megatherium lysogène. Ann Inst Pasteur (Paris) 1951 Oct;81(4):389–393. [PubMed] [Google Scholar]
  • Lawrence CW, Christensen R. UV mutagenesis in radiation-sensitive strains of yeast. Genetics. 1976 Feb;82(2):207–232.[PMC free article] [PubMed] [Google Scholar]
  • Lehmann AR. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol. 1972 May 28;66(3):319–337. [PubMed] [Google Scholar]
  • Lehmann AR. Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem. 1972 Dec 18;31(3):438–445. [PubMed] [Google Scholar]
  • Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 1974 Sep;34(9):2311–2321. [PubMed] [Google Scholar]
  • LWOFF A, SIMINOVITCH L, KJELDGAARD N. Induction de la production de bacteriophages chez une bactérie lysogène. Ann Inst Pasteur (Paris) 1950 Dec;79(6):815–859. [PubMed] [Google Scholar]
  • Lytle CD, Benane SG, Bockstahler LE. Ultraviolet-enhanced reactivation of Herpes virus in human tumor cells. Photochem Photobiol. 1974 Aug;20(2):91–94. [PubMed] [Google Scholar]
  • MacPhee DG. Effects of an R factor and caffeine on ultraviolet mutability in Salmonella typhimurium. Mutat Res. 1973 Jun;18(3):367–370. [PubMed] [Google Scholar]
  • MacPhee DG. Effect of rec mutations on the ultraviolet protecting and mutation-enhancing properties of the plasmid R-Utrecht in Salmonella typhimurium. Mutat Res. 1973 Sep;19(3):357–359. [PubMed] [Google Scholar]
  • Mackie G, Wilson DB. Regulation of the gal operon of Escherichia coli by the capR gene. J Biol Chem. 1972 May 25;247(10):2973–2978. [PubMed] [Google Scholar]
  • Maher VM, Ouellette LM, Curren RD, McCormick JJ. Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature. 1976 Jun 17;261(5561):593–595. [PubMed] [Google Scholar]
  • MARCOVICH H. Etude radiobiologique du système lysogène d'Escherichia coli K12. I. Rayons X. Ann Inst Pasteur (Paris) 1956 Mar;90(3):303–319. [PubMed] [Google Scholar]
  • MARCOVICH H. Etude de l'action des rayons ultraviolets sur le système lysogène Escherichia coli K 12 (lambda), K 12 S, lambda. Ann Inst Pasteur (Paris) 1956 Oct;91(4):511–522. [PubMed] [Google Scholar]
  • Marinus MG, Morris NR. Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat Res. 1975 Apr;28(1):15–26. [PubMed] [Google Scholar]
  • Marsden HS, Pollard EC, Ginoza W, Randall EP. Involvement of recA and exr genes in the in vivo inhibition of the recBC nuclease. J Bacteriol. 1974 May;118(2):465–470.[PMC free article] [PubMed] [Google Scholar]
  • McCaffrey R, Smoler DF, Baltimore D. Terminal deoxynucleotidyl transferase in a case of childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1973 Feb;70(2):521–525.[PMC free article] [PubMed] [Google Scholar]
  • McCann J, Spingarn NE, Kobori J, Ames BN. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc Natl Acad Sci U S A. 1975 Mar;72(3):979–983.[PMC free article] [PubMed] [Google Scholar]
  • MELECHEN NE, SKAAR PD. The provocation of an early step of induction by thymine deprivation. Virology. 1962 Jan;16:21–29. [PubMed] [Google Scholar]
  • Mennigmann HD. Pyrimidine dimers as pre-mutational lesions in Escherichia coli WP2 Hcr. Mol Gen Genet. 1972;117(2):167–186. [PubMed] [Google Scholar]
  • Meyn RE, Humphrey RM. Deoxyribonucleic acid synthesis in ultraviolet-light-irradiated Chinese hamster cells. Biophys J. 1971 Mar;11(3):295–301.[PMC free article] [PubMed] [Google Scholar]
  • Miller CG. Peptidases and proteases of Escherichia coli and Salmonella typhimurium. Annu Rev Microbiol. 1975;29:485–504. [PubMed] [Google Scholar]
  • Monk M. Observations on the mechanism of indirect induction by mating with ultraviolet-irradiated col I donors. Mol Gen Genet. 1967;100(3):264–274. [PubMed] [Google Scholar]
  • Monk M. Induction of phage lambda by transferred irradiated colI DNA. Mol Gen Genet. 1969;106(1):14–24. [PubMed] [Google Scholar]
  • Monk M, Gross J. Induction of prophage lambda in a mutant of E. coli K12 defective in initiation of DNA replication at high temperature. Mol Gen Genet. 1971;110(4):299–306. [PubMed] [Google Scholar]
  • Monk M, Peacey M, Gross JD. Repair of damage induced by ultraviolet light in DNA polymerase-defective Escherichia coli cells. J Mol Biol. 1971 Jun 14;58(2):623–630. [PubMed] [Google Scholar]
  • Moreau P, Bailone A, Devoret R. Prophage lambda induction of Escherichia coli K12 envA uvrB: a highly sensitive test for potential carcinogens. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3700–3704.[PMC free article] [PubMed] [Google Scholar]
  • Morse LS, Pauling C. Induction of error-prone repair as a consequence of DNA ligase deficiency in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4645–4649.[PMC free article] [PubMed] [Google Scholar]
  • Mount DW, Kosel C. Ultraviolet light-induced mutation in UV-resistant, thermosensitive derivatives of lexA-strains of Escherichia coli K-12. Mol Gen Genet. 1975;136(2):95–106. [PubMed] [Google Scholar]
  • Mount DW, Kosel CK, Walker A. Inducible, error-free DNA Repair in tsl recA mutants of E. coli. Mol Gen Genet. 1976 Jul 5;146(1):37–41. [PubMed] [Google Scholar]
  • Mount DW, Low KB, Edmiston SJ. Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet lght-induced mutations. J Bacteriol. 1972 Nov;112(2):886–893.[PMC free article] [PubMed] [Google Scholar]
  • Mound DW, Walker AC, Kosel C. Suppression of lex mutations affecting deoxyribonucleic acid repair in Escherichia coli K-12 by closely linked thermosensitive mutations. J Bacteriol. 1973 Nov;116(2):950–956.[PMC free article] [PubMed] [Google Scholar]
  • Mount DW, Walker AC, Kosel C. Effect of tsl mutations in decreasing radiation sensitivity of a recA- strain of Escherichia coli K-12. J Bacteriol. 1975 Mar;121(3):1203–1207.[PMC free article] [PubMed] [Google Scholar]
  • Mount DW, Walker AC, Kosel C. Indirect suppression of radiation sensitivity of a recA- strain of Escherichia coli K12. Basic Life Sci. 1975;5A:383–388. [PubMed] [Google Scholar]
  • Nelson RL, Mason HS. An explicit hypothesis for chemical carcinogenesis. J Theor Biol. 1972 Oct;37(1):197–200. [PubMed] [Google Scholar]
  • Nishioka H, Doudney CO. Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutat Res. 1969 Sep-Oct;8(2):215–228. [PubMed] [Google Scholar]
  • Nishioka H, Doudney CO. Different modes of loss of photoreversibility of ultraviolet light-induced true and suppressor mutations to tryptophan independence in an auxotrophic strain of Escherichia coli. Mutat Res. 1970 Apr;9(4):349–358. [PubMed] [Google Scholar]
  • Noack D, Klaus S. Inactivation kinetics of lambda phage repressors in a mutant of E. coli temperature sensitive in DNA replication. Mol Gen Genet. 1972;115(3):216–224. [PubMed] [Google Scholar]
  • NOVICK A, SZILARD L. Experiments on light-reactivation of ultra-violet inactivated bacteria. Proc Natl Acad Sci U S A. 1949 Oct;35(10):591–600.[PMC free article] [PubMed] [Google Scholar]
  • Ono J, Shimazu Y. Ultraviolet reactivation of a bacteriophage containing a single-stranded deoxyribonucleic acid as a genetic element. Virology. 1966 Jun;29(2):295–302. [PubMed] [Google Scholar]
  • Osborn M, Person S, Phillips S, Funk F. A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4. J Mol Biol. 1967 Jun 28;26(3):437–447. [PubMed] [Google Scholar]
  • OTSUJI N, SEKIGUCHI M, IIJIMA T, TAKAGI Y. Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature. 1959 Oct 3;184(Suppl 14):1079–1080. [PubMed] [Google Scholar]
  • Paterson MC, Boyle JM, Setlow RB. Ultraviolet- and X-ray-induced responses of a deoxyribonucleic acid polymerase-deficient mutant of Escherichia coli. J Bacteriol. 1971 Jul;107(1):61–67.[PMC free article] [PubMed] [Google Scholar]
  • PETTIJOHN D, HANAWALT P. EVIDENCE FOR REPAIR-REPLICATION OF ULTRAVIOLET DAMAGED DNA IN BACTERIA. J Mol Biol. 1964 Aug;9:395–410. [PubMed] [Google Scholar]
  • Pollard EC, Randall EP. Studies on the inducible inhibitor of radiation-induced DNA degradation of Escherichia coli. Radiat Res. 1973 Aug;55(2):265–279. [PubMed] [Google Scholar]
  • PRITCHARD RH, LARK KG. INDUCTION OF REPLICATION BY THYMINE STARVATION AT THE CHROMOSOME ORIGIN IN ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:288–307. [PubMed] [Google Scholar]
  • Ptashne M. Specific binding of the lambda phage repressor to lambda DNA. Nature. 1967 Apr 15;214(5085):232–234. [PubMed] [Google Scholar]
  • Radman M, Devoret R. UV-reactivation of bacteriophage lambda in excision repair-deficient hosts: independence of red functions and attachment regions. Virology. 1971 Feb;43(2):504–506. [PubMed] [Google Scholar]
  • Regan JD, Setlow RB. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
  • Regan JD, Trosko JE, Carrier WL. Evidence for excision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro. Biophys J. 1968 Mar;8(3):319–325.[PMC free article] [PubMed] [Google Scholar]
  • Reznikoff WS. The operon revisited. Annu Rev Genet. 1972;6:133–156. [PubMed] [Google Scholar]
  • Roberts JW, Roberts CW. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc Natl Acad Sci U S A. 1975 Jan;72(1):147–151.[PMC free article] [PubMed] [Google Scholar]
  • Rosner JL, Kass LR, Yarmolinsky MB. Parallel behavior of F and Pl in causing indirect induction of lysogenic bacteria. Cold Spring Harb Symp Quant Biol. 1968;33:785–789. [PubMed] [Google Scholar]
  • Rothman RH, Kato T, Clark AJ. The beginning of an investigation of the role of recF in the pathways of metabolism of ultraviolet-irradiated DNA in Escherichia coli. Basic Life Sci. 1975;5A:283–291. [PubMed] [Google Scholar]
  • Rupert CS, Harm H, To K. The anatomy of direct repair. An Acad Bras Cienc. 1973;45(Suppl):151–159. [PubMed] [Google Scholar]
  • Rupert CS. Enzymatic photoreactivation: overview. Basic Life Sci. 1975;5A:73–87. [PubMed] [Google Scholar]
  • Rupp WD, Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. [PubMed] [Google Scholar]
  • Rupp WD, Wilde CE, 3rd, Reno DL, Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):25–44. [PubMed] [Google Scholar]
  • Sarin PS, Gallo RC. Terminal deoxynucleotidyltransferase in chronic myelogenous leukemia. J Biol Chem. 1974 Dec 25;249(24):8051–8053. [PubMed] [Google Scholar]
  • Schuster H, Beyersmann D, Mikolajczyk M, Schlicht M. Prophage induction by high temperature in thermosensitive dna mutants lysogenic for bacteriophage lambda. J Virol. 1973 Jun;11(6):879–885.[PMC free article] [PubMed] [Google Scholar]
  • Sedgwick SG. Inducible error-prone repair in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2753–2757.[PMC free article] [PubMed] [Google Scholar]
  • Sedgwick SG. Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J Bacteriol. 1975 Jul;123(1):154–161.[PMC free article] [PubMed] [Google Scholar]
  • Sedgwick SG, Bridges BA. Survival, mutation and capacity to repair single-strand DNA breaks after gamma irradiation in different Exr - strains of Escherichia coli. Mol Gen Genet. 1972;119(2):93–102. [PubMed] [Google Scholar]
  • Sedgwick SG, Bridges BA. Requirement for either DNA polymerase I or DNA polymerase 3 in post-replication repair in excision-proficient Escherichia coli. Nature. 1974 May 24;249(455):348–349. [PubMed] [Google Scholar]
  • Setlow JK. Photoreactivation. Radiat Res. 1966;(Suppl):141+–141+. [PubMed] [Google Scholar]
  • Setlow JK, Boling ME. Ultraviolet action spectra for mutation in Escherichia coli. Mutat Res. 1970 May;9(5):437–442. [PubMed] [Google Scholar]
  • SETLOW RB, CARRIER WL. THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM. Proc Natl Acad Sci U S A. 1964 Feb;51:226–231.[PMC free article] [PubMed] [Google Scholar]
  • Setlow RB, Regan JD, German J, Carrier WL. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041.[PMC free article] [PubMed] [Google Scholar]
  • Setlow RB, Setlow JK. Effects of radiation on polynucleotides. Annu Rev Biophys Bioeng. 1972;1:293–346. [PubMed] [Google Scholar]
  • Shinagawa H, Ito T. Inactivation of DNA-binding activity of repressor in extracts of lambda-lysogen treated with mitomycin C. Mol Gen Genet. 1973 Nov 2;126(2):103–110. [PubMed] [Google Scholar]
  • Shineberg B, Zipser D. The ion gene and degradation of beta-galactosidase nonsense fragments. J Bacteriol. 1973 Dec;116(3):1469–1471.[PMC free article] [PubMed] [Google Scholar]
  • SICARD N, DEVORET R. [Effects of thymine dificiency on the K 12 T lysogenic and 15 T colicinogenic strains of Escherichia coli]. C R Hebd Seances Acad Sci. 1962 Sep 10;255:1417–1419. [PubMed] [Google Scholar]
  • Siegel EC. Ultraviolet-sensitive mutator strain of Escherichia coli K-12. J Bacteriol. 1973 Jan;113(1):145–160.[PMC free article] [PubMed] [Google Scholar]
  • Sinzinis BI, Smirnov GB, Saenko AA. Repair deficiency in Escherichia coli UV-sensitive mutator strain uvr502. Biochem Biophys Res Commun. 1973 Jul 2;53(1):309–316. [PubMed] [Google Scholar]
  • Smith KC, Meun DH. Repair of radiation-induced damage in Escherichia coli. I. Effect of rec mutations on post-replication repair of damage due to ultraviolet radiation. J Mol Biol. 1970 Aug;51(3):459–472. [PubMed] [Google Scholar]
  • Springgate CF, Loeb LA. Mutagenic DNA polymerase in human leukemic cells. Proc Natl Acad Sci U S A. 1973 Jan;70(1):245–249.[PMC free article] [PubMed] [Google Scholar]
  • Sahai Srivastava BI, Minowada J. Terminal deoxynucleotidyl transferase activity in a cell line (molt-4) derived from the peripheral blood of a patient with acute lymphoblastic leukemia. Biochem Biophys Res Commun. 1973 Apr 2;51(3):529–535. [PubMed] [Google Scholar]
  • Sussman R, Zeev HB. Proposed mechanism of bacteriophage lambda induction: acquisition of binding sites for lambda repressor by DNA of the host. Proc Natl Acad Sci U S A. 1975 May;72(5):1973–1976.[PMC free article] [PubMed] [Google Scholar]
  • Sutton HE, Wagner RP. Mutation and enzyme function in humans. Annu Rev Genet. 1975;9:187–212. [PubMed] [Google Scholar]
  • Swenson PA, Schenley RL. Respiration, growth and viability of repair-deficient mutants of Escherichia coli after ultraviolet irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Jan;25(1):51–60. [PubMed] [Google Scholar]
  • Tait RC, Harris AL, Smith DW. DNA repair in Escherichia coli mutants deficient in DNA polymerases I, II and-or 3. Proc Natl Acad Sci U S A. 1974 Mar;71(3):675–679.[PMC free article] [PubMed] [Google Scholar]
  • TESSMAN ES, OZAKI T. The interaction of phage S13 with ultraviolet-irradiated host cells and properties of the ultraviolet-irradiated phage. Virology. 1960 Nov;12:431–449. [PubMed] [Google Scholar]
  • Tomizawa J, Ogawa T. Effect of ultraviolet irradiation on bacteriophage lambda immunity. J Mol Biol. 1967 Jan 28;23(2):247–263. [PubMed] [Google Scholar]
  • Tomizawa J, Ogawa H. Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli. Nat New Biol. 1972 Sep 6;239(88):14–16. [PubMed] [Google Scholar]
  • TROSKO JE, CHU EH, CARRIER WL. THE INDUCTION OF THYMINE DIMERS IN ULTRAVIOLET-IRRADIATED MAMMALIAN CELLS. Radiat Res. 1965 Apr;24:667–672. [PubMed] [Google Scholar]
  • Van Sluis CA, Mattern IE, Paterson MC. Properties of uvrE mutants of Escherichia coli K12. I. Effects of UV irradiation on DNA metabolism. Mutat Res. 1974 Dec;25(3):273–279. [PubMed] [Google Scholar]
  • Volkert MR, George DL, Witkin EM. Partial suppression of the LexA phenotype by mutations (rnm) which restore ultraviolet resistance but not ultraviolet mutability to Escherichia coli B/r uvr A lexA. Mutat Res. 1976 Jul;36(1):17–28. [PubMed] [Google Scholar]
  • WACKER A, DELLWEG H, JACHERTS D. [Thymine dimerization and survival of bacteria]. J Mol Biol. 1962 May;4:410–412. [PubMed] [Google Scholar]
  • Walker JR, Ussery CL, Allen JS. Bacterial cell division regulation: lysogenization of conditional cell division lon - mutants of Escherichia coli by bacteriophage. J Bacteriol. 1973 Mar;113(3):1326–1332.[PMC free article] [PubMed] [Google Scholar]
  • Webb RB, Malina MM. Mutagenesis in Escherichia coli by visible light. Science. 1967 May 26;156(3778):1104–1105. [PubMed] [Google Scholar]
  • Wechsler JA, Gross JD. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet. 1971;113(3):273–284. [PubMed] [Google Scholar]
  • Weigle JJ. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636.[PMC free article] [PubMed] [Google Scholar]
  • Witkin EM. Genetics of Resistance to Radiation in ESCHERICHIA COLI. Genetics. 1947 May;32(3):221–248.[PMC free article] [PubMed] [Google Scholar]
  • WITKIN EM. Time, temperature, and protein synthesis: a study of ultraviolet-induced mutation in bacteria. Cold Spring Harb Symp Quant Biol. 1956;21:123–140. [PubMed] [Google Scholar]
  • Witkin EM. Radiation-induced mutations and their repair. Science. 1966 Jun 3;152(3727):1345–1353. [PubMed] [Google Scholar]
  • Witkin EM. The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. Proc Natl Acad Sci U S A. 1967 May;57(5):1275–1279.[PMC free article] [PubMed] [Google Scholar]
  • Witkin EM. The mutability toward ultraviolet light of recombination-deficient strains of Escherichia coli. Mutat Res. 1969 Jul-Aug;8(1):9–14. [PubMed] [Google Scholar]
  • Witkin EM. Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol. 1969;23:487–514. [PubMed] [Google Scholar]
  • Witkin EM. Ultraviolet mutagenesis in strains of E. coli deficient in DNA polymerase. Nat New Biol. 1971 Jan 20;229(3):81–82. [PubMed] [Google Scholar]
  • Witkin EM. Ultraviolet mutagenesis in repair-deficient derivatives of Escherichia coli B-r: uvrA recB and uvrA recC strains. Mutat Res. 1972 Nov;16(3):235–242. [PubMed] [Google Scholar]
  • Witkin EM. Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B-r: evidence that ultraviolet mutagenesis depends upon an inducible function. Proc Natl Acad Sci U S A. 1974 May;71(5):1930–1934.[PMC free article] [PubMed] [Google Scholar]
  • Witkin EM. Elevated mutability of polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: evidence for an inducible error-prone repair system ("SOS repair") and its anomalous expression in these strains. Genetics. 1975 Jun;79 (Suppl):199–213. [PubMed] [Google Scholar]
  • Witkin EM. Relationships among repair, mutagenesis, and survival: overview. Basic Life Sci. 1975;5A:347–353. [PubMed] [Google Scholar]
  • Witkin EM. Thermal enhancement of ultraviolet mutability in a dnaB uvrA derivative of Escherichia coli B/r: evidence for inducible error-prone repair. Basic Life Sci. 1975;5A:369–378. [PubMed] [Google Scholar]
  • Witkin EM. Persistence and decay of thermoinducible error-prone repair activity in nonfilamentous derivatives of tif-1, Escherichia coli B/r: the timing of some critical events in ultraviolet mutagenesis. Mol Gen Genet. 1975 Dec 29;142(2):87–103. [PubMed] [Google Scholar]
  • Witkin EM, George DL. Ultraviolet mutagenesis in polA and UvrA polA derivatives of Escherichia coli B-R: evidence for an inducible error-prone repair system. Genetics. 1973 Apr;73(Suppl):91–10. [PubMed] [Google Scholar]
  • Witkin EM, Parisi EC. Bromouracil mutagenesis: mispairing or misrepair? Mutat Res. 1974 Dec;25(3):407–409. [PubMed] [Google Scholar]
  • Witkin EM, Wermundsen IE. Do ultraviolet-induced mutations to streptomycin resistance exhibit susceptibility to mutation frequency decline? Mutat Res. 1973 Aug;19(2):261–264. [PubMed] [Google Scholar]
  • Worcel A. Induction of chromosome re-initiations in a thermosensitive DNA mutant of Escherichiacoli. J Mol Biol. 1970 Sep 14;52(2):371–386. [PubMed] [Google Scholar]
  • Youngs DA, Smith KC. Involvement of DNA polymerase 3 in excision repair after ultraviolet irradiation. Nat New Biol. 1973 Aug 22;244(138):240–241. [PubMed] [Google Scholar]
  • Youngs DA, Smith KC. Evidence for the control by exrA and polA genes of two branches of the uvr gene-dependent excision repair pathway in Escherichia coli K-12. J Bacteriol. 1973 Oct;116(1):175–182.[PMC free article] [PubMed] [Google Scholar]
  • Youngs DA, Smith KC. X-ray sensitivity and repair capacity of a polA1 exrA strain of Escherichia coli K-12. J Bacteriol. 1973 Apr;114(1):121–127.[PMC free article] [PubMed] [Google Scholar]
  • Youngs DA, Smith KC. Genetic control of multiple pathways of post-replicational repair in uvrB strains of Escherichia coli K-12. J Bacteriol. 1976 Jan;125(1):102–110.[PMC free article] [PubMed] [Google Scholar]
  • Youngs DA, Van der Schueren E, Smith KC. Separate branches of the uvr gene-dependent excision repair process in ultraviolet-irradiated Escherichia coli K-12 cells; their dependence upon growth medium and the polA, recA, recB, and exrA genes. J Bacteriol. 1974 Feb;117(2):717–725.[PMC free article] [PubMed] [Google Scholar]
  • ZELLE MR, OGG JE, HOLLAENDER A. Photoreactivation of induced mutation and inactivation of Escherichia coli exposed to various wave lengths of monochromatic ultraviolet radiation. J Bacteriol. 1958 Feb;75(2):190–198.[PMC free article] [PubMed] [Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.