Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation.
Journal: 2017/March - Philosophical Transactions of the Royal Society B: Biological Sciences
ISSN: 1471-2970
Abstract:
The proinflammatory cytokine tumour necrosis factor-alpha (TNFα) has long been characterized for its role in the innate immune system, but more recently has been found to have a distinct role in the nervous system that does not overlap with other proinflammatory cytokines. Through regulation of neuronal glutamate and GABA receptor trafficking, TNF mediates a homeostatic form of synaptic plasticity, but plays no direct role in Hebbian forms of plasticity. As yet, there is no evidence to suggest that this adaptive plasticity plays a significant role in normal development, but it does maintain neuronal circuit function in the face of several types of disruption. This includes developmental plasticity in primary sensory cortices, as well as modulating the response to antidepressants, chronic antipsychotics and drugs of abuse. TNF is also a prominent component of the neuroinflammation occurring in most neuropathologies, but the role of TNF-mediated synaptic plasticity in this context remains to be determined. We tested this in a maternal immune activation (MIA) model of neurodevelopmental disorders. Using TNF-/- mice, we observed that TNF is not required for the expression of abnormal social or anxious behaviour in this model. This indicates that TNF does not uniquely contribute to the development of neuronal dysfunction in this model, and suggests that during neuroinflammatory events, compensation between the various proinflammatory cytokines is the norm.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Relations:
Content
Citations
(3)
References
(98)
Genes
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Philos Trans R Soc Lond B Biol Sci 372(1715): 20160160

Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation

Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada, H3G 1A4
e-mail: ac.lligcm@negawllets.divad
One contribution of 16 to a discussion meeting issue ‘Integrating Hebbian and homeostatic plasticity’.
Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada, H3G 1A4
One contribution of 16 to a discussion meeting issue ‘Integrating Hebbian and homeostatic plasticity’.
Accepted 2016 Nov 9.
Published by the Royal Society. All rights reserved.

Abstract

The proinflammatory cytokine tumour necrosis factor-alpha (TNFα) has long been characterized for its role in the innate immune system, but more recently has been found to have a distinct role in the nervous system that does not overlap with other proinflammatory cytokines. Through regulation of neuronal glutamate and GABA receptor trafficking, TNF mediates a homeostatic form of synaptic plasticity, but plays no direct role in Hebbian forms of plasticity. As yet, there is no evidence to suggest that this adaptive plasticity plays a significant role in normal development, but it does maintain neuronal circuit function in the face of several types of disruption. This includes developmental plasticity in primary sensory cortices, as well as modulating the response to antidepressants, chronic antipsychotics and drugs of abuse. TNF is also a prominent component of the neuroinflammation occurring in most neuropathologies, but the role of TNF-mediated synaptic plasticity in this context remains to be determined. We tested this in a maternal immune activation (MIA) model of neurodevelopmental disorders. Using TNF−/− mice, we observed that TNF is not required for the expression of abnormal social or anxious behaviour in this model. This indicates that TNF does not uniquely contribute to the development of neuronal dysfunction in this model, and suggests that during neuroinflammatory events, compensation between the various proinflammatory cytokines is the norm.

This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.

Keywords: cytokine, homeostatic plasticity, maternal immune activation, inflammation
Abstract

Acknowledgements

We thank Alexandre Trottier for expert technical assistance.

Acknowledgements

References

  • 1. Barker CF, Billingham RE. 1977. Immunologically privileged sites. Adv. Immunol.25, 1–54. (10.1016/S0065-2776(08)60930-X) [] [[PubMed]
  • 2. Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C. 2000. Cytokine signals propagate through the brain. Mol. Psychiatry5, 604–615. (10.1038/sj.mp.4000813) [] [[PubMed]
  • 3. Smith RA, Baglioni C. 1987. The active form of tumor necrosis factor is a trimer. J. Biol. Chem.262, 6951–6954. [[PubMed]
  • 4. Black RA, et al. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature385, 729–733. (10.1038/385729a0) [] [[PubMed]
  • 5. Grell M, et al. 1995. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell83, 793–802. (10.1016/0092-8674(95)90192-2) [] [[PubMed]
  • 6. Wajant H, Pfizenmaier K, Scheurich P. 2003. Tumor necrosis factor signaling. Cell Death Differ.10, 45–65. (10.1038/sj.cdd.4401189) [] [[PubMed]
  • 7. Stellwagen D, Beattie EC, Seo JY, Malenka RC. 2005. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci.25, 3219–3228. (10.1523/JNEUROSCI.4486-04.2005) ] [
  • 8. Pribiag H, Stellwagen D. 2013. TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA, receptors. J. Neurosci.33, 15 879–15 893. (10.1523/JNEUROSCI.0530-13.2013) ] [
  • 9. EBeattie C, et al. 2002. Control of synaptic strength by glial TNFα. Science295, 2282–2285. (10.1126/science.1067859) [] [[PubMed]
  • 10. Ogoshi F, Yin HZ, Kuppumbatti Y, Song B, Amindari S, Weiss JH. 2005. Tumor necrosis-factor-α (TNF-α) induces rapid insertion of Ca-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp. Neurol.193, 384–393. (10.1016/j.expneurol.2004.12.026) [] [[PubMed]
  • 11. He P, Liu Q, Wu J, Shen Y. 2012. Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J.26, 334–345. (10.1096/fj.11-192716) ] [
  • 12. Kawasaki Y, Zhang L, Cheng JK, Ji RR. 2008. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci.28, 5189–5194. (10.1523/JNEUROSCI.3338-07.2008) ] [
  • 13. Han P, Whelan PJ. 2010. Tumor necrosis factor alpha enhances glutamatergic transmission onto spinal motoneurons. J. Neurotrauma27, 287–292. (10.1089/neu.2009.1016) [] [[PubMed]
  • 14. Furukawa K, Mattson MP. 1998. The transcription factor NF-κB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-α in hippocampal neurons. J. Neurochem.70, 1876–1886. (10.1046/j.1471-4159.1998.70051876.x) [] [[PubMed]
  • 15. Lai AY, Swayze RD, El-Husseini A, Song C. 2006. Interleukin-1β modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J. Neuroimmunol.175, 97–106. (10.1016/j.jneuroim.2006.03.001) [] [[PubMed]
  • 16. Stellwagen D, Malenka RC. 2006. Synaptic scaling mediated by glial TNF-α. Nature440, 1054–1059. (10.1038/nature04671) [] [[PubMed]
  • 17. Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D. 2014. An adaptive role of TNFα in the regulation of striatal synapses. J. Neurosci.34, 6146–6155. (10.1523/JNEUROSCI.3481-13.2014) ] [
  • 18. Kaneko M, Stellwagen D, Malenka RC, Stryker MP. 2008. Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron58, 673–680. (10.1016/j.neuron.2008.04.023) ] [
  • 19. Grassi F, Mileo AM, Monaco L, Punturieri A, Santoni A, Eusebi F. 1994. TNF-α increases the frequency of spontaneous miniature synaptic currents in cultured rat hippocampal neurons. Brain Res.659, 226–230. (10.1016/0006-8993(94)90883-4) [] [[PubMed]
  • 20. Santello M, Bezzi P, Volterra A. 2011. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron69, 988–1001. (10.1016/j.neuron.2011.02.003) [] [[PubMed]
  • 21. Keck T, et al. 2017. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Phil. Trans. R. Soc. B372, 20160158 (10.1098/rstb.2016.0158) ] [
  • 22. Zenke F, Gerstner W. 2017. Hebbian plasticity requires compensatory processes on multiple timescales. Phil. Trans. R. Soc. B372, 20160259 (10.1098/rstb.2016.0259) ] [
  • 23. Yee AX, Hsu Y-T, Chen L. 2017. A metaplastic view of the interaction between homeostatic and Hebbian plasticity. Phil. Trans. R. Soc. B372, 20160155 (10.1098/rstb.2016.0155) ] [
  • 24. Golan H, Levav T, Mendelsohn A, Huleihel M. 2004. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb. Cortex14, 97–105. (10.1093/cercor/bhg108) [] [[PubMed]
  • 25. Baune T, Wiede F, Braun A, Golledge J, Arolt V, Koerner H. 2008. Cognitive dysfunction in mice deficient for TNF- and its receptors. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B, 1056–1064. (10.1002/ajmg.b.30712) [] [[PubMed]
  • 26. Yamada K, Iida R, Miyamoto Y, Saito K, Sekikawa K, Seishima M, Nabeshima T. 2000. Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-α gene: implications for emotional behavior. J. Neuroimmunol. 111, 131–138. (10.1016/S0165-5728(00)00375-1) [] [[PubMed]
  • 27. Patel A, Siegel A, Zalcman SS. 2010. Lack of aggression and anxiolytic-like behavior in TNF receptor (TNF-R1 and TNF-R2) deficient mice. BrainBehav. Immun.24, 1276–1280. (10.1016/j.bbi.2010.05.005) ] [
  • 28. Simen BB, Duman CH, Simen AA, Duman RS. 2006. TNFα signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol. Psychiatry59, 775–785. (10.1016/j.biopsych.2005.10.013) [] [[PubMed]
  • 29. Fursenko DV, Khotskin NV, Kulikov VA, Kulikov AV. 2016. Behavioral phenotyping of mice deficient in the tumor necrosis factor. Russ. J. Genet. Appl. Res.6, 400–404. (10.1134/S2079059716040067) [[PubMed]
  • 30. Duseja R, Heir R, Lewitus GM, Altimimi HF, Stellwagen D. 2014. Astrocytic TNFα regulates the behavioral response to antidepressants. Brain Behav. Immun.44, 187–194. (10.1016/j.bbi.2014.09.012) [] [[PubMed]
  • 31. Glazewski S, Greenhill S, Fox K. 2017. Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex. Phil. Trans. R. Soc. B372, 20160150 (10.1098/rstb.2016.0150) ] [
  • 32. Ranson A, Cheetham CE, Fox K, Sengpiel F. 2012. Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. Proc. Natl Acad. Sci. USA109, 1311–1316. (10.1073/pnas.1112204109) ] [
  • 33. Lee RH, et al. 2010. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system. Neural Dev.5, 2 (10.1186/1749-8104-5-2) ] [
  • 34. Gilmore JH, Jarskog FL, Vadlamudi S, Lauder JM. 2004. Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNFα inhibit cortical neuron dendrite development. Neuropsychopharmacology29, 1221–1229. (10.1038/sj.npp.1300446) [] [[PubMed]
  • 35. Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen D. 2016. Microglial TNF-α suppresses cocaine-induced plasticity and behavioral sensitization. Neuron90, 483–491. (10.1016/j.neuron.2016.03.030) ] [
  • 36. Luscher C, Malenka RC. 2011. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron69, 650–663. (10.1016/j.neuron.2011.01.017) ] [
  • 37. Meyer U. 2014 Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol. Psychiatry75, 307–315. (10.1016/j.biopsych.2013.07.011) [] [[PubMed][Google Scholar]
  • 38. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP. 2014. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol.10, 643–660. (10.1038/nrneurol.2014.187) [] [[PubMed]
  • 39. Han X, Li N, Meng Q, Shao F, Wang W. 2011. Maternal immune activation impairs reversal learning and increases serum tumor necrosis factor-α in offspring. Neuropsychobiology64, 9–14. (10.1159/000322455) [] [[PubMed]
  • 40. Onore CE, Schwartzer JJ, Careaga M, Berman RF, Ashwood P. 2014. Maternal immune activation leads to activated inflammatory macrophages in offspring. Brain Behav. Immun.38, 220–226. (10.1016/j.bbi.2014.02.007) ] [
  • 41. Garay PA, Hsiao EY, Patterson PH, McAllister AK. 2013. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun.31, 54–68. (10.1016/j.bbi.2012.07.008) ] [
  • 42. Hsiao EY, McBride SW, Chow J, Mazmanian SK, Patterson PH. 2012. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl Acad. Sci. USA109, 12 776–12 781. (10.1073/pnas.1202556109) ] [
  • 43. Patterson PH. 2009 Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res.204, 313–321. (10.1016/j.bbr.2008.12.016) [] [[PubMed][Google Scholar]
  • 44. Hope S, Ueland T, Steen NE, Dieset I, Lorentzen S, Berg AO, Agartz I, Aukrust P, Andreassen OA. 2013. Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. Schizophr. Res.145, 36–42. (10.1016/j.schres.2012.12.023) [] [[PubMed]
  • 45. Goldsmith DR, Rapaport MH, Miller BJ. 2016. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry21, 1696–1709. (10.1038/mp.2016.3) ] [
  • 46. Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M. 2007. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr. Neurol.36, 361–365. (10.1016/j.pediatrneurol.2007.01.012) [] [[PubMed]
  • 47. Li X, et al. 2009. Elevated immune response in the brain of autistic patients. J. Neuroimmunol.207, 111–116. (10.1016/j.jneuroim.2008.12.002) ] [
  • 48. Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E. 2007. Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry7, 551 (10.1186/1471-244X-7-46) ] [
  • 49. Basta-Kaim A, et al. 2012. Maternal immune activation leads to age-related behavioral and immunological changes in male rat offspring – the effect of antipsychotic drugs. Pharmacol. Rep.64, 1400–1410. (10.1016/S1734-1140(12)70937-4) [] [[PubMed]
  • 50. Krstic D, et al. 2012. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflamm.9, 151 (10.1186/1742-2094-9-151) ] [
  • 51. Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H. 2016. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav. Immun.55, 25–38. (10.1016/j.bbi.2015.09.015) [] [[PubMed]
  • 52. Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. 2013. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl. Psychiatry3, e240 (10.1038/tp.2013.16) ] [
  • 53. Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C. 2002. Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology26, 204–215. (10.1016/S0893-133X(01)00360-8) [] [[PubMed]
  • 54. Fatemi SH, Emamian ES, Sidwell RW, Kist DA, Stary JM, Earle JA, Thuras P. 2002. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice. Mol. Psychiatry7, 633–640. (10.1038/sj.mp.4001046) [] [[PubMed]
  • 55. Giovanoli S, et al. 2013. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science339, 1095–1099. (10.1126/science.1228261) [] [[PubMed]
  • 56. Juckel G, Manitz MP, Brüne M, Friebe A, Heneka MT, Wolf RJ. 2011. Microglial activation in a neuroinflammational animal model of schizophrenia—a pilot study. Schizophr. Res.131, 96–100. (10.1016/j.schres.2011.06.018) [] [[PubMed]
  • 57. Ducharme G, Lowe GC, Goutagny R, Williams S. 2012. Early alterations in hippocampal circuitry and theta rhythm generation in a mouse model of prenatal infection: implications for schizophrenia. PLoS ONE7, e29754 (10.1371/journal.pone.0029754) ] [
  • 58. Escobar M, et al. 2011. Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge. Biol. Psychiatry70, 992–999. (10.1016/j.biopsych.2011.01.009) [] [[PubMed]
  • 59. Lowe GC, Luheshi GN, Williams S. 2008. Maternal infection and fever during late gestation are associated with altered synaptic transmission in the hippocampus of juvenile offspring rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.295, R1563–R1571. (10.1152/ajpregu.90350.2008) [] [[PubMed]
  • 60. Oh-Nishi A, Obayashi S, Sugihara I, Minamimoto T, Suhara T. 2010. Maternal immune activation by polyriboinosinic-polyribocytidilic acid injection produces synaptic dysfunction but not neuronal loss in the hippocampus of juvenile rat offspring. Brain Res.1363, 170–179. (10.1016/j.brainres.2010.09.054) [] [[PubMed]
  • 61. Roumier A, Pascual O, Béchade C, Wakselman S, Poncer J-C, Réal E, Triller A, Bessis A. 2008. Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS ONE3, e2595 (10.1371/journal.pone.0002595) ] [
  • 62. Patrich E, Piontkewitz Y, Peretz A, Weiner I, Attali B. 2016. Maternal immune activation produces neonatal excitability defects in offspring hippocampal neurons from pregnant rats treated with poly I:C. Sci. Rep.6, 19106 (10.1038/srep19106) ] [
  • 63. Ito HT, Smith SE, Hsiao E, Patterson PH. 2010. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav. Immun.24, 930–941. (10.1016/j.bbi.2010.03.004) ] [
  • 64. Elmer BM, Estes ML, Barrow SL, McAllister AK. 2013. MHCI requires MEF2 transcription factors to negatively regulate synapse density during development and in disease. J. Neurosci.33, 13 791–13 804. (10.1523/JNEUROSCI.2366-13.2013) ] [
  • 65. Coiro P, et al. 2015. Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav. Immun.50, 249–258. (10.1016/j.bbi.2015.07.022) ] [
  • 66. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. 2007. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci.27, 10 695–10 702. (10.1523/JNEUROSCI.2178-07.2007) ] [
  • 67. Garbett KA, Hsiao EY, Kalman S, Patterson PH, Mirnics K. 2012. Effects of maternal immune activation on gene expression patterns in the fetal brain. Transl. Psychiatry2, e98 (10.1038/tp.2012.24) ] [
  • 68. Ratnayake U, Quinn T, LaRosa DA, Dickinson H, Walker DW. 2014. Prenatal exposure to the viral mimetic poly I:C alters fetal brain cytokine expression and postnatal behaviour. Dev. Neurosci.36, 83–94. (10.1159/000362205) [] [[PubMed]
  • 69. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. 2012. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun.26, 607–616. (10.1016/j.bbi.2012.01.011) ] [
  • 70. Zuckerman L, Weiner I. 2005. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J. Psychiatr. Res.39, 311–323. (10.1016/j.jpsychires.2004.08.008) [] [[PubMed]
  • 71. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. 2006. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol. Psychiatry59, 546–554. (10.1016/j.biopsych.2005.07.031) [] [[PubMed]
  • 72. O'Tuathaigh CM, Kirby BP, Moran PM, Waddington JL. 2010. Mutant mouse models: genotype–phenotype relationships to negative symptoms in schizophrenia. Schizophr. Bull.36, 271–288. (10.1093/schbul/sbp125) ] [
  • 73. Silverman JL, Yang M, Lord C, Crawley JN. 2010. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci.11, 490–502. (10.1038/nrn2851) ] [
  • 74. Abazyan B, et al. 2010. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol. Psychiatry68, 1172–1181. (10.1016/j.biopsych.2010.09.022) ] [
  • 75. Ibi D, et al. 2010. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav. Brain Res.206, 32–37. (10.1016/j.bbr.2009.08.027) ] [
  • 76. Vuillermot S, Joodmardi E, Perlmann T, Ove Ogren S, Feldon J, Meyer U. 2012. Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J. Neurosci.32, 436–451. (10.1523/JNEUROSCI.4831-11.2012) ] [
  • 77. Wu WL, Adams CE, Stevens KE, Chow K-H, Freedman R, Patterson PH. 2015. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav. Immun.46, 192–202. (10.1016/j.bbi.2015.02.005) ] [
  • 78. Camara ML, Corrigan F, Jaehne EJ, Jawahar MC, Anscomb H, Baune BT. 2015. Tumor necrosis factor alpha and its receptors in behaviour and neurobiology of adult mice, in the absence of an immune challenge. Behav. Brain Res.290, 51–60. (10.1016/j.bbr.2015.04.040) [] [[PubMed]
  • 79. Nuss P. 2015 Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat.11, 165–175. [Google Scholar]
  • 80. Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I. 2006. Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience143, 51–62. (10.1016/j.neuroscience.2006.07.029) [] [[PubMed]
  • 81. Canetta S, et al. 2016. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol. Psychiatry21, 956–968. (10.1038/mp.2015.222) ] [
  • 82. Meyer U, Feldon J, Schedlowski M, Yee BK. 2006. Immunological stress at the maternal–foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav. Immun.20, 378–388. (10.1016/j.bbi.2005.11.003) [] [[PubMed]
  • 83. Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. 2008. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav. Immun.22, 469–486. (10.1016/j.bbi.2007.09.012) [] [[PubMed]
  • 84. Babri S, Doosti MH, Salari AA. 2014. Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring. Brain Behav. Immun.37, 164–176. (10.1016/j.bbi.2013.12.003) [] [[PubMed]
  • 85. Li WY, Chang YC, Lee LJ, Lee LJ. 2014. Prenatal infection affects the neuronal architecture and cognitive function in adult mice. Dev. Neurosci.36, 359–370. (10.1159/000362383) [] [[PubMed]
  • 86. Zuckerman L, Rehavi M, Nachman R, Weiner I. 2003. Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacologyy28, 1778–1789. (10.1038/sj.npp.1300248) [] [[PubMed]
  • 87. Howland JG, Cazakoff BN, Zhang Y. 2012. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience201, 184–198. (10.1016/j.neuroscience.2011.11.011) ] [
  • 88. Van den Eynde K, et al. 2014. Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behav. Brain Res.258, 179–186. (10.1016/j.bbr.2013.10.005) [] [[PubMed]
  • 89. Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. 2010. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology35, 2462–2478. (10.1038/npp.2010.129) ] [
  • 90. Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. 2015. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics10, 1143–1155. (10.1080/15592294.2015.1114202) ] [
  • 91. Labouesse MA, Langhans W, Meyer U. 2015. Abnormal context–reward associations in an immune-mediated neurodevelopmental mouse model with relevance to schizophrenia. Transl. Psychiatry5, e637 (10.1038/tp.2015.129) ] [
  • 92. Zager A, Mennecier G, Palermo-Neto J. 2012. Maternal immune activation in late gestation enhances locomotor response to acute but not chronic amphetamine treatment in male mice offspring: role of the D1 receptor. Behav. Brain Res232, 30–36. (10.1016/j.bbr.2012.03.036) [] [[PubMed]
  • 93. Richtand NM, Ahlbrand R, Horn PS, Chambers B, Davis J, Benoit S. 2012. Effects of prenatal immune activation and peri-adolescent stress on amphetamine-induced conditioned place preference in the rat. Psychopharmacology222, 313–324. (10.1007/s00213-012-2646-8) ] [
  • 94. Arrode-Bruses G, Bruses JL. 2012. Maternal immune activation by poly I:C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J. Neuroinflamm.9, 83 (10.1186/1742-2094-9-83) ] [
  • 95. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. 2001. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr. Res.47, 27–36. (10.1016/S0920-9964(00)00032-3) [] [[PubMed]
  • 96. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. 2006. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol. Psychiatry11, 47–55. (10.1038/sj.mp.4001748) [] [[PubMed]
  • 97. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. 2000. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr. Res.47, 64–72. (10.1203/00006450-200001000-00013) [] [[PubMed]
  • 98. Pratt L, Ni L, Ponzio NM, Jonakait GM. 2013. Maternal inflammation promotes fetal microglial activation and increased cholinergic expression in the fetal basal forebrain: role of interleukin-6. Pediatr. Res.74, 393–401. (10.1038/pr.2013.126) [] [[PubMed]
  • 99. Nawa H, Takei N. 2006. Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci. Res.56, 2–13. (10.1016/j.neures.2006.06.002) [] [[PubMed]
  • 100. Smolders S, Smolders SMT, Swinnen N, Gärtner A, Rigo J-M, Legendre P, Brône B. 2015. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo. Front. Cell. Neurosci.9, 301 (10.3389/fncel.2015.00301) ] [
  • 101. Golan H, Stilman M, Lev V, Huleihel M. 2006. Normal aging of offspring mice of mothers with induced inflammation during pregnancy. Neuroscience141, 1909–1918. (10.1016/j.neuroscience.2006.05.045) [] [[PubMed]
  • 102. Iosif RE, et al. 2006. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci.26, 9703–9712. (10.1523/JNEUROSCI.2723-06.2006) ] [
  • 103. Kisiswa L, Osório C, Erice C, Vizard T, Wyatt S, Davies AM. 2013. TNFα reverse signaling promotes sympathetic axon growth and target innervation. Nat. Neurosci.16, 865–873. (10.1038/nn.3430) ] [
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.