Using mouse immunoglobulin mu (IgM) pre-mRNA as the model substrate for in vitro splicing, we have explored the role of exon sequences in splicing. We have found that deletion of the 5' portion of exon M2 of the IgM gene abolishes the splicing of its immediately upstream intron. Splicing was restored when a purine-rich sequence found within the deleted region was reinserted into the deletion construct. This M2 exon sequence was able to stimulate the splicing of a heterologous intron of the Drosophila doublesex pre-mRNA that contains a suboptimal 3' splice site sequence. These results show that the IgM M2 exon sequence functions as a splicing enhancer. We found that the assembly of the early splicing complex is stimulated by the M2 exon sequence. In vitro competition experiments show that this stimulatory effect is mediated by the interaction of some trans-acting factors. Our results suggest that the U1 snRNP is one such factor. We propose that recognition of an enhancer exon sequence by the components of splicing machinery plays a vital role in the selection of splice sites, not only for the IgM pre-mRNA but for other pre-mRNAs. We designate such a sequence as exon recognition sequence (ERS).