The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.
Journal: 1974/July - Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
PUBMED: 4598299
Abstract:
With a stepwise degradation and terminal labeling procedure the 3'-terminal sequence of E. coli 16S ribosomal RNA is shown to be Pyd-A-C-C-U-C-C-U-U-A(OH). It is suggested that this region of the RNA is able to interact with mRNA and that the 3'-terminal U-U-A(OH) is involved in the termination of protein synthesis through base-pairing with terminator codons. The sequence A-C-C-U-C-C could recognize a conserved sequence found in the ribosome binding sites of various coliphage mRNAs; it may thus be involved in the formation of the mRNA.30S subunit complex.
Relations:
Content
Citations
(1K+)
References
(53)
Chemicals
(7)
Organisms
(2)
Processes
(7)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Proc Natl Acad Sci U S A 71(4): 1342-1346

The 3′-Terminal Sequence of <em>Escherichia coli</em> 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites

Abstract

With a stepwise degradation and terminal labeling procedure the 3′-terminal sequence of E. coli 16S ribosomal RNA is shown to be Pyd-A-C-C-U-C-C-U-U-AOH. It is suggested that this region of the RNA is able to interact with mRNA and that the 3′-terminal U-U-AOH is involved in the termination of protein synthesis through base-pairing with terminator codons. The sequence A-C-C-U-C-C could recognize a conserved sequence found in the ribosome binding sites of various coliphage mRNAs; it may thus be involved in the formation of the mRNA·30S subunit complex.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (916K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Dalgarno L, Shine J. Conserved terminal sequence in 18SrRNA may represent terminator anticodons. Nat New Biol. 1973 Oct 31;245(148):261–262. [PubMed] [Google Scholar]
  • Shine J, Dalgarno L. Occurrence of heat-dissociable ribosomal RNA in insects: the presence of three polynucleotide chains in 26 S RNA from cultured Aedes aegypti cells. J Mol Biol. 1973 Mar 25;75(1):57–72. [PubMed] [Google Scholar]
  • Flessel CP, Ralph P, Rich A. Polyribosomes of growing bacteria. Science. 1967 Nov 3;158(3801):658–660. [PubMed] [Google Scholar]
  • HUNT JA. TERMINAL-SEQUENCE STUDIES OF HIGH-MOLECULAR-WEIGHT RIBONUCLEIC. THE REACTION OF PERIODATE-OXIDIZED RIBONUCLEOSIDES , 5'-RIBONUCLEOTIDES AND RIBONUCLEIC ACID WITH ISONIAZID. Biochem J. 1965 May;95:541–551.[PMC free article] [PubMed] [Google Scholar]
  • Hunt JA. Terminal-sequence studies of high-molecular-weight ribonucleic acid. The 3'-termini of rabbit reticulocyte ribosomal RNA. Biochem J. 1970 Nov;120(2):353–363.[PMC free article] [PubMed] [Google Scholar]
  • Fellner P, Ehresmann C, Stiegler P, Ebel JP. Partial nucleotide sequence of 16S ribosomal RNA from E. coli. Nat New Biol. 1972 Sep 6;239(88):1–5. [PubMed] [Google Scholar]
  • Sanger F, Brownlee GG, Barrell BG. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. [PubMed] [Google Scholar]
  • Brownlee GG, Sanger F, Barrell BG. The sequence of 5 s ribosomal ribonucleic acid. J Mol Biol. 1968 Jun 28;34(3):379–412. [PubMed] [Google Scholar]
  • Hunt JA. Terminal sequence studies of high-molecular-weight ribonucleic acid. The 3' termini of rabbit globin messenger ribonucleic acid. Biochem J. 1973 Feb;131(2):315–325.[PMC free article] [PubMed] [Google Scholar]
  • Santer UV, Santer M. The sequence of the 3'-OH end of the 16 S RNA of Escherichia coli. FEBS Lett. 1972 Apr 1;21(3):311–314. [PubMed] [Google Scholar]
  • Crick FH. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. [PubMed] [Google Scholar]
  • Tinoco I, Jr, Uhlenbeck OC, Levine MD. Estimation of secondary structure in ribonucleic acids. Nature. 1971 Apr 9;230(5293):362–367. [PubMed] [Google Scholar]
  • Uhlenbeck OC, Martin FH, Doty P. Self-complementary oligoribonucleotides: effects of helix defects and guanylic acid-cytidylic acid base pairs. J Mol Biol. 1971 Apr 28;57(2):217–229. [PubMed] [Google Scholar]
  • LIPSETT MN. COMPLEX FORMATION BETWEEN POLYCYTIDYLIC ACID AND GUANINE OLIGONUCLEOTIDES. J Biol Chem. 1964 Apr;239:1256–1260. [PubMed] [Google Scholar]
  • Ganoza MC, Tomkins JK. Polypeptide chain termination in vitro: competition for nonsense codons between a purified release factor and suppressor tRNA. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1455–1463. [PubMed] [Google Scholar]
  • Capecchi MR, Klein HA. Characterization of three proteins involved in polypeptide chain termination. Cold Spring Harb Symp Quant Biol. 1969;34:469–477. [PubMed] [Google Scholar]
  • Brenner S, Stretton AO, Kaplan S. Genetic code: the 'nonsense' triplets for chain termination and their suppression. Nature. 1965 Jun 5;206(988):994–998. [PubMed] [Google Scholar]
  • Gallucci E, Garen A. Suppressor genes for nonsense mutations. II. The su-4 and su-5 suppressor genes of Escherichia coli. J Mol Biol. 1966 Jan;15(1):193–200. [PubMed] [Google Scholar]
  • Kaplan S, Stretton AO, Brenner S. Amber suppressors: efficiency of chain propagation and suppressor specific amino acids. J Mol Biol. 1965 Dec;14(2):528–533. [PubMed] [Google Scholar]
  • Garen A, Garen S, Wilhelm RC. Suppressor genes for nonsense mutations. I. The Su-1, Su-2 and Su-3 genes of Escherichia coli. J Mol Biol. 1965 Nov;14(1):167–178. [PubMed] [Google Scholar]
  • Sambrook JF, Fan DP, Brenner S. A strong suppressor specific for UGA. Nature. 1967 Apr 29;214(5087):452–453. [PubMed] [Google Scholar]
  • Model P, Webster RE, Zinder ND. The UGA codon in vitro: chain termination and suppression. J Mol Biol. 1969 Jul 14;43(1):177–190. [PubMed] [Google Scholar]
  • Roth JR. UGA nonsense mutations in Salmonella typhimurium. J Bacteriol. 1970 May;102(2):467–475.[PMC free article] [PubMed] [Google Scholar]
  • Ferretti JJ. Low-level reading of the UGA triplet in Salmonella typhimurium. J Bacteriol. 1971 May;106(2):691–693.[PMC free article] [PubMed] [Google Scholar]
  • Hirsh D, Gold L. Translation of the UGA triplet in vitro by tryptophan transfer RNA's. J Mol Biol. 1971 Jun 14;58(2):459–468. [PubMed] [Google Scholar]
  • Moore CH, Farron F, Bohnert D, Weissmann C. Possible origin of a minor virus specific protein (A1) in Q-beta particles. Nat New Biol. 1971 Sep 15;234(50):204–206. [PubMed] [Google Scholar]
  • Weiner AM, Weber K. Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat New Biol. 1971 Sep 15;234(50):206–209. [PubMed] [Google Scholar]
  • Steitz JA. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 1969 Dec 6;224(5223):957–964. [PubMed] [Google Scholar]
  • de Wachter R, Merregaert J, Vandenberghe A, Contreras R, Fiers W. Studies on the bacteriophage MS2. The untranslated 5'-terminal nucleotide sequence preceding the first cistron. Eur J Biochem. 1971 Oct 14;22(3):400–414. [PubMed] [Google Scholar]
  • Staples DH, Hindley J, Billeter MA, Weissmann C. Localization of Q-beta maturation cistron ribosome binding site. Nat New Biol. 1971 Sep 15;234(50):202–204. [PubMed] [Google Scholar]
  • Contreras R, Ysebaert M, Jou WM, Fiers W. Bacteriophage Ms2 RNA: nucleotide sequence of the end of the a protein gene and the intercistronic region. Nat New Biol. 1973 Jan 24;241(108):99–101. [PubMed] [Google Scholar]
  • Gupta SL, Chen J, Schaefer L, Lengyel P, Weissman SM. Nucleotide sequence of a ribosome attachment site of bacteriophage f2 RNA. Biochem Biophys Res Commun. 1970 Jun 5;39(5):883–888. [PubMed] [Google Scholar]
  • Min Jou W, Haegeman G, Ysebaert M, Fiers W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972 May 12;237(5350):82–88. [PubMed] [Google Scholar]
  • Staples DH, Hindley J. Ribosome binding site of Q-beta RNA polymerase cistron. Nat New Biol. 1971 Sep 15;234(50):211–212. [PubMed] [Google Scholar]
  • Arrand JR, Hindley J. Nucleotide sequence of a ribosome binding site on RNA synthesized in vitro from coliphage T7. Nat New Biol. 1973 Jul 4;244(131):10–13. [PubMed] [Google Scholar]
  • Bronson MJ, Squires C, Yanofsky C. Nucleotide sequences from tryptophan messenger RNA of Escherichia coli: the sequence corresponding to the amino-terminal region of the first polypeptide specified by the operon. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2335–2339.[PMC free article] [PubMed] [Google Scholar]
  • Lodish HF. Specificity in bacterial protein synthesis: role of initiation factors and ribosomal subunits. Nature. 1970 May 23;226(5247):705–707. [PubMed] [Google Scholar]
  • Leffler S, Szer W. Messenger selection by bacterial ribosomes. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2364–2368.[PMC free article] [PubMed] [Google Scholar]
  • Steitz JA. Discriminatory ribosome rebinding of isolated regions of protein synthesis initiation from the ribonucleic acid of bacteriophage R17. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2605–2609.[PMC free article] [PubMed] [Google Scholar]
  • Lodish HF. Bacteriophage f2 RNA: control of translation and gene order. Nature. 1968 Oct 26;220(5165):345–350. [PubMed] [Google Scholar]
  • Konisky J, Nomura M. Interaction of colicins with bacterial cells. II. Specific alteration of Escherichia coli ribosomes induced by colicin E3 in vivo. J Mol Biol. 1967 Jun 14;26(2):181–195. [PubMed] [Google Scholar]
  • Senior BW, Kwasniak J, Holland IB. Colicin E3-directed changes in ribosome function and polyribosome metabolism in Escherichia coli K12. J Mol Biol. 1970 Oct 28;53(2):205–220. [PubMed] [Google Scholar]
  • Bowman CM, Dahlberg JE, Ikemura T, Konisky J, Nomura M. Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proc Natl Acad Sci U S A. 1971 May;68(5):964–968.[PMC free article] [PubMed] [Google Scholar]
  • Senior BW, Holland IB. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci U S A. 1971 May;68(5):959–963.[PMC free article] [PubMed] [Google Scholar]
  • Boon T. Inactivation of ribosomes in vitro by colicin E 3 . Proc Natl Acad Sci U S A. 1971 Oct;68(10):2421–2425.[PMC free article] [PubMed] [Google Scholar]
  • Sparling PF. Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome. Science. 1970 Jan 2;167(3914):56–58. [PubMed] [Google Scholar]
  • Okuyama A, Machiyama N, Kinoshita T, Tanaka N. Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem Biophys Res Commun. 1971 Apr 2;43(1):196–199. [PubMed] [Google Scholar]
  • Tai PC, Wallace BJ, Davis BD. Actions of aurintricarboxylate, kasugamycin, and pactamycin on Escherichia coli polysomes. Biochemistry. 1973 Feb;12(4):616–620. [PubMed] [Google Scholar]
  • Helser TL, Davies JE, Dahlberg JE. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat New Biol. 1971 Sep 1;233(35):12–14. [PubMed] [Google Scholar]
  • Schreier MH, Noll H. Conformational changes in ribosomes during protein synthesis. Proc Natl Acad Sci U S A. 1971 Apr;68(4):805–809.[PMC free article] [PubMed] [Google Scholar]
  • Chuang D, Simpson MV. A translocation-associated ribosomal conformational change detected by hydrogen exchange and sedimentation velocity. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1474–1478.[PMC free article] [PubMed] [Google Scholar]
  • Sherman MI, Simpson MV. Ribosomal conformation changes during subunit dissociation and reassociation. Cold Spring Harb Symp Quant Biol. 1969;34:220–222. [PubMed] [Google Scholar]
  • Boon T. Inactivation of ribosomes in vitro by colicin E 3 and its mechanism of action. Proc Natl Acad Sci U S A. 1972 Mar;69(3):549–552.[PMC free article] [PubMed] [Google Scholar]
Biochemistry Department, School of General Studies, Australian National University, Canberra, A.C.T. Australia 2600
Abstract
With a stepwise degradation and terminal labeling procedure the 3′-terminal sequence of E. coli 16S ribosomal RNA is shown to be Pyd-A-C-C-U-C-C-U-U-AOH. It is suggested that this region of the RNA is able to interact with mRNA and that the 3′-terminal U-U-AOH is involved in the termination of protein synthesis through base-pairing with terminator codons. The sequence A-C-C-U-C-C could recognize a conserved sequence found in the ribosome binding sites of various coliphage mRNAs; it may thus be involved in the formation of the mRNA·30S subunit complex.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.