Target-induced in-situ formation of fluorescent DNA-templated copper nanoparticles by a catalytic hairpin assembly: application to the determination of DNA and thrombin.
Journal: 2019/November - Mikrochimica Acta
ISSN: 1436-5073
Abstract:
A fluorometric method is described for nucleic acid signal amplification through target-induced catalytic hairpin assembly with DNA-templated copper nanoparticles (Cu NPs). The toehold-mediated self-assembly of three metastable hairpins is triggered in presence of target DNA. This leads to the formation of a three-way junction structure with protruding mononucleotides at the 3' terminus. The target DNA is released from the formed branched structure and triggers another assembly cycle. As a result, plenty of branched DNA becomes available for the synthesis of Cu NPs which have fluorescence excitation/emission maxima at 340/590 nm. At the same time, the branched structure protects the Cu NPs from digestion by exonuclease III. The unreacted hairpins are digested by exonuclease III, and this warrants a lower background signal. The method can detect ssDNA (24 nt) at low concentration (44 pM) and is selective over single-nucleotide polymorphism. On addition of an aptamer, the strategy can also be applied to the quantitation of thrombin at levels as low as 0.9 nM. Graphical abstractSchematic representation of target-induced catalytic hairpin assembly to form branched DNA template for the in situ synthesis of fluorescent Cu nanoparticles.
Relations:
Chemicals
(3)
Genes
(2)
Processes
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.