Tags for the stable isotopic labeling of carbohydrates and quantitative analysis by mass spectrometry.
Journal: 2007/October - Analytical Chemistry
ISSN: 0003-2700
Abstract:
Although stable isotopic labeling has found widespread use in the proteomics field, its application to carbohydrate quantification has been limited. Herein we report the design, synthesis, and application of a novel series of compounds that allow for the incorporation of isotopic variation within glycan structures. The novel feature of the compounds is the ability to incorporate the isotopes in a controlled manner, allowing for the generation of four tags that vary only in their isotopic content. This allows for the direct comparisons of three samples or triplicate measurements with an internal standard within one mass spectral analysis. Quantitation of partially depolymerized glycosaminoglycan mixtures, as well as N-linked glycans released from fetuin, is used to demonstrate the utility of the tetraplex tagging strategy.
Relations:
Content
Citations
(34)
References
(33)
Grants
(1K+)
Chemicals
(3)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Anal Chem 79(15): 5777-5784

Novel Tags for the Stable Isotopic Labeling of Carbohydrates and Quantitative Analysis by Mass Spectrometry

Boston University School of Medicine, Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston, MA 02118
CORRESPONDING AUTHOR FOOTNOTE Joseph Zaia, Boston University School of Medicine, Department of Biochemistry, Center for Biomedical Mass Spectrometry, 670 Albany St., Rm 509, Boston, MA 02118 (p) 617-638-6762, (f) 617-638-6761 ude.ub@aiazj

Abstract

Although stable isotopic labeling has found widespread use in the proteomics field, its application to carbohydrate quantification has been limited. Herein we report the design, synthesis, and application of a novel series of compounds that allow for the incorporation of isotopic variation within glycan structures. The novel feature of the compounds is the ability to incorporate the isotopes in a controlled manner, allowing for the generation of four tags that vary only in their isotopic content. This allows for the direct comparisons of three samples or triplicate measurements with an internal standard within one mass spectral analysis. Quantitation of partially depolymerized glycosaminoglycan mixtures, as well as N-linked glycans released from fetuin, is used to demonstrate the utility of the tetraplex tagging strategy.

Keywords: Carbohydrate Quantification, Stable Isotope Tag, Glycomics
Abstract

References

  • 1. Apweiler R, Hermjakob H, Sharon N. Biochim Biophys Acta. 1999;1473:4–8.[PubMed]
  • 2. Iozzo RV. Annu Rev Biochem. 1998;67:609–652.[PubMed]
  • 3. Helenius A, Aebi M. Science. 2001;291:2364–2369.[PubMed]
  • 4. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J Proteoglycans and Glycosaminoglycans, in Essentials of Glycobiology. Cold Spring Harbor Press; Plainview, NY: 1999. [PubMed][Google Scholar]
  • 5. Conrad H Heparin Binding Proteins. Academic Press; New York: 1998. [PubMed][Google Scholar]
  • 6. Smith AE, Helenius A. Science. 2004;304:237–242.[PubMed]
  • 7. Marsh M, Helenius A. Cell. 2006;124:729–740.
  • 8. Caffaro CE, Hirschberg CB. Acc Chem Res. 2006;39:805–812.[PubMed]
  • 9. Haslam SM, North SJ, Dell A. Curr Opin Struct Biol. 2006;16:584–591.[PubMed]
  • 10. Dwek MV, Brooks SA. Curr Cancer Drug Targets. 2004;4:425–442.[PubMed]
  • 11. Harvey DJ. Expert Rev Proteomics. 2005;2:87–101.[PubMed]
  • 12. Yu Y, Sweeney MD, Saad OM, Crown SE, Hsu AR, Handel TM, Leary JA. J Biol Chem. 2005;280:32200–32208.[PubMed]
  • 13. Saad OM, Ebel H, Uchimura K, Rosen SD, Bertozzi CR, Leary JA. Glycobiology. 2005;15:818–826.[PubMed]
  • 14. Zhang J, Xie Y, Hedrick JL, Lebrilla CB. Anal Biochem. 2004;334:20–35.[PubMed]
  • 15. Madera M, Mechref Y, Klouckova I, Novotny MV. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;845:121–137.[PubMed]
  • 16. Yuan J, Hashii N, Kawasaki N, Itoh S, Kawanishi T, Hayakawa T. J Chromatogr A. 2005;1067:145–152.[PubMed]
  • 17. Hitchcock AM, Costello CE, Zaia J. Biochemistry. 2006;45:2350–2361.
  • 18. Hsu J, Chang SJ, Franz AH. J Am Soc Mass Spectrom. 2006;17:194–204.[PubMed]
  • 19. Lill J. Mass Spectrom Rev. 2003;22:182–194.[PubMed]
  • 20. Ong SE, Mann M. Nat Chem Biol. 2005;1:252–262.[PubMed]
  • 21. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Nat Biotechnol. 1999;17:994–999.[PubMed]
  • 22. Zhang R, Sioma CS, Wang S, Regnier FE. Anal Chem. 2001;73:5142–5149.[PubMed]
  • 23. Borisov OV, Goshe MB, Conrads TP, Rakov VS, Veenstra TD, Smith RD. Anal Chem. 2002;74:2284–2292.[PubMed]
  • 24. Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL. Mol Cell Proteomics. 2003;2:299–314.[PubMed]
  • 25. Li J, Steen H, Gygi SP. Mol Cell Proteomics. 2003;2:1198–1204.[PubMed]
  • 26. Anumula KR. Anal Biochem. 2000;283:17–26.[PubMed]
  • 27. Anumula KR. Anal Biochem. 2006;350:1–23.[PubMed]
  • 28. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Anal Biochem. 1995;230:229–238.[PubMed]
  • 29. Harvey DJ. J Am Soc Mass Spectrom. 2000;11:900–915.[PubMed]
  • 30. Seymour JL, Costello CE, Zaia J. Journal of the American Society for Mass Spectrometry. 2006;17:844–854.
  • 31. Zaia J, Miller MJC, Seymour JL, Costello CE. 2006 submitted. [PubMed]
  • 32. Wilm MS, Mann M. Int J Mass Spectrom Ion Processes. 1994;136:167–180.[PubMed]
  • 33. Shinmei M, Miyauchi S, Machida A, Miyazaki K. Arthritis Rheum. 1992;35:1304–1308.[PubMed]
  • 34. Desaire H, Leary JA. J Am Soc Mass Spectrom. 2000;11:916–920.[PubMed]
  • 35. Desaire H, Leary JA. J Am Soc Mass Spectrom. 2000;11:1086–1094.[PubMed]
  • 36. Saad OM, Leary JA. Anal Chem. 2003;75:2985–2995.[PubMed]
  • 37. Miller MJ, Costello CE, Malmstrom A, Zaia J. Glycobiology. 2006;16:502–513.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.