Signal transduction and Ca2+ signaling in intact myocardium.
Journal: 2006/August - Journal of Pharmacological Sciences
ISSN: 1347-8613
PUBMED: 16799263
Abstract:
The experimental procedures to simultaneously detect contractile activity and Ca(2+) transients by means of the Ca(2+) sensitive bioluminescent protein aequorin in multicellular preparations, and the fluorescent dye indo-1 in single myocytes, provide powerful tools to differentiate the regulatory mechanisms of intrinsic and external inotropic interventions in intact cardiac muscle. The regulatory process of cardiac excitation-contraction coupling is classified into three categories; upstream (Ca(2+) mobilization), central (Ca(2+) binding to troponin C), and/or downstream (thin filament regulation of troponin C property or crossbridge cycling and crossbridge cycling activity itself) mechanisms. While a marked increase in contractile activity by the Frank-Starling mechanism is associated with only a small alteration in Ca(2+) transients (downstream mechanism), the force-frequency relationship is primarily due to a frequency-dependent increase of Ca(2+) transients (upstream mechanism) in mammalian ventricular myocardium. The characteristics of regulation induced by beta- and alpha-adrenoceptor stimulation are very different between the two mechanisms: the former is associated with a pronounced facilitation of an upstream mechanism, whereas the latter is primarily due to modulation of central and/or downstream mechanisms. alpha-Adrenoceptor-mediated contractile regulation is mimicked by endothelin ET(A)- and angiotensin II AT(1)-receptor stimulation. Acidosis markedly suppresses the regulation induced by Ca(2+) mobilizers, but certain Ca(2+) sensitizers are able to induce the positive inotropic effect with central and/or downstream mechanisms even under pathophysiological conditions.
Relations:
Citations
(20)
Pathways
(1)
Diseases
(1)
Chemicals
(1)
Organisms
(1)
Processes
(2)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.