Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease.
Journal: 2018/November - Journal of Clinical Investigation
ISSN: 1558-8238
Abstract:
Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain-containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways.
Relations:
Content
Citations
(14)
Genes
(2)
Similar articles
Articles by the same authors
Discussion board
J Clin Invest 128(1): 483-499

Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease

+5 authors
Supplemental data:
Click here to view.(3.9M, pdf)
Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada.
Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom.
Department of Pathology and
Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
Corresponding author.
Karina Thieme: rb.psu@emeiht.anirak; Youan Liu: ac.hms@oYuiL; Laurette Geldenhuys: ac.htlaehsn@DMsyuhnedleg.etterual; Penelope Poyah: ac.htlaehsn@hayop.epoleneP; Andrew Advani: ac.hms@ainavda
Address correspondence to: Andrew Advani, St. Michael’s Hospital, 6-151, 61 Queen Street East, Toronto, Ontario, Canada. M5C 2T2. Phone: 416.864.6060, ext. 8413; Email: ac.hms@ainavda.
Authorship note: S. Majumder and K. Thieme contributed equally to this work.
Karina Thieme: rb.psu@emeiht.anirak; Youan Liu: ac.hms@oYuiL; Laurette Geldenhuys: ac.htlaehsn@DMsyuhnedleg.etterual; Penelope Poyah: ac.htlaehsn@hayop.epoleneP; Andrew Advani: ac.hms@ainavdaAddress correspondence to: Andrew Advani, St. Michael’s Hospital, 6-151, 61 Queen Street East, Toronto, Ontario, Canada. M5C 2T2. Phone: 416.864.6060, ext. 8413; Email: ac.hms@ainavda.Authorship note: S. Majumder and K. Thieme contributed equally to this work.
Received 2017 Jun 29; Accepted 2017 Oct 31.

Abstract

Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain–containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways.

Keywords: Endocrinology, Nephrology
Keywords: Chronic kidney disease, Diabetes, Epigenetics
Abstract

Acknowledgments

The authors thank Kryski Biomedia for the artwork. These studies were supported by a Biomedical Research Grant from the Kidney Foundation of Canada and an Operating Grant from Diabetes Canada (OG-3-14-4502-AA) and in part by Grant-in-Aid funding from the Heart and Stroke Foundation of Canada (G-14-0005877, to AA) and a Canadian Institutes of Health Research Operating Grant (MOP-133631, to AA). SM was supported by a Diabetes Canada Postdoctoral Fellowship. KT was supported by a Research Internship Abroad grant from the Sao Paulo Research Foundation (Fapesp 2016/04591-1). SNB is supported by a Keenan Family Foundation KRESCENT Postdoctoral Fellowship Award and was supported by a Heart and Stroke/Richard Lewar Center of Excellence Fellowship Award and a Banting and Best Diabetes Centre Hugh Sellers Postdoctoral Fellowship. TAA is supported by a King Abdullah Foreign Scholarship. AA is a recipient of a Diabetes Investigator Award from Diabetes Canada.

Acknowledgments

Version Changes

Version 1. 12/11/2017

Electronic publication

Version 2. 01/02/2018

Print issue publication

Version Changes

Footnotes

S. Majumder’s present address is: Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani, Rajasthan, India.

Conflict of interest: A. Advani has received research support from Boehringer Ingelheim and AstraZeneca and is listed as an inventor on a patent application (WO 2015/128453) submitted by Boehringer Ingelheim.

Reference information: J Clin Invest. 2018;128(1):483–499.https://doi.org/10.1172/JCI95946.

Footnotes

References

  • 1. Centers for Disease Control and Prevention State-specific trends in chronic kidney failure — United States, 1990–2001. MMWR Morb Mortal Wkly Rep. 2004;53(39):918–920.[PubMed]
  • 2. Fogo ABCauses and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol. 2015;11(2):76–87.[Google Scholar]
  • 3. Reidy K, Kang HM, Hostetter T, Susztak KMolecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333–2340. doi: 10.1172/JCI72271.] [[Google Scholar]
  • 4. Bechtel-Walz W, Huber TBChromatin dynamics in kidney development and function. Cell Tissue Res. 2014;356(3):601–608. doi: 10.1007/s00441-014-1884-y.] [[PubMed][Google Scholar]
  • 5. Conway E, Healy E, Bracken APPRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 2015;37:42–48. doi: 10.1016/j.ceb.2015.10.003.] [[PubMed][Google Scholar]
  • 6. Cao R, et al Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–1043. doi: 10.1126/science.1076997.] [[PubMed][Google Scholar]
  • 7. Trojer P, Reinberg DHistone lysine demethylases and their impact on epigenetics. Cell. 2006;125(2):213–217. doi: 10.1016/j.cell.2006.04.003.] [[PubMed][Google Scholar]
  • 8. Agger K, et al UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449(7163):731–734. doi: 10.1038/nature06145.] [[PubMed][Google Scholar]
  • 9. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli GThe histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130(6):1083–1094. doi: 10.1016/j.cell.2007.08.019.] [[PubMed][Google Scholar]
  • 10. Lee MG, et al Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318(5849):447–450. doi: 10.1126/science.1149042.] [[PubMed][Google Scholar]
  • 11. Lan F, et al A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449(7163):689–694. doi: 10.1038/nature06192.] [[PubMed][Google Scholar]
  • 12. Tsukada Y, et al Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–816. doi: 10.1038/nature04433.] [[PubMed][Google Scholar]
  • 13. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge KIdentification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A. 2007;104(47):18439–18444. doi: 10.1073/pnas.0707292104.] [[Google Scholar]
  • 14. Kim E, Song JJDiverse ways to be specific: a novel Zn-binding domain confers substrate specificity to UTX/KDM6A histone H3 Lys 27 demethylase. Genes Dev. 2011;25(21):2223–2226. doi: 10.1101/gad.179473.111.] [[Google Scholar]
  • 15. Sengoku T, Yokoyama SStructural basis for histone H3 Lys 27 demethylation by UTX/KDM6A. Genes Dev. 2011;25(21):2266–2277. doi: 10.1101/gad.172296.111.] [[Google Scholar]
  • 16. Siddiqi FS, et al The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J Am Soc Nephrol. 2016;27(7):2021–2034. doi: 10.1681/ASN.2014090898.] [[Google Scholar]
  • 17. Pan M, et al Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol. 2016;18(10):1090–1101. doi: 10.1038/ncb3410.] [[Google Scholar]
  • 18. Edeling M, Ragi G, Huang S, Pavenstadt H, Susztak KDevelopmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 2016;12(7):426–439. doi: 10.1038/nrneph.2016.54.] [[Google Scholar]
  • 19. Moeller MJ, Sanden SK, Soofi A, Wiggins RC, Holzman LBPodocyte-specific expression of cre recombinase in transgenic mice. Genesis. 2003;35(1):39–42. doi: 10.1002/gene.10164.] [[PubMed][Google Scholar]
  • 20. Su IH, et al Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003;4(2):124–131. doi: 10.1038/ni876.] [[PubMed][Google Scholar]
  • 21. D’Agati VD, Kaskel FJ, Falk RJFocal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2398–2411. doi: 10.1056/NEJMra1106556.] [[PubMed][Google Scholar]
  • 22. MMRC. Strain Certification: A service of the UNC Mutant Mouse Regional Resource Center. NIH Website. Accessed November 14, 2017.[PubMed]
  • 23. Arif E, Solanki AK, Nihalani DAdriamycin susceptibility among C57BL/6 substrains. Kidney Int. 2016;89(3):721–723.[Google Scholar]
  • 24. Niranjan T, et al The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med. 2008;14(3):290–298. doi: 10.1038/nm1731.] [[PubMed][Google Scholar]
  • 25. Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ, Susztak KNotch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes. 2015;64(12):4099–4111. doi: 10.2337/db15-0260.] [[Google Scholar]
  • 26. Fogo ABAnimal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol. 2003;23(2):161–171. doi: 10.1053/snep.2003.50015.] [[PubMed][Google Scholar]
  • 27. Knutson SK, et al Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A. 2013;110(19):7922–7927. doi: 10.1073/pnas.1303800110.] [[Google Scholar]
  • 28. Cheng HT, Miner JH, Lin M, Tansey MG, Roth K, Kopan RGamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development. 2003;130(20):5031–5042. doi: 10.1242/dev.00697.] [[PubMed][Google Scholar]
  • 29. Murea M, et al Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int. 2010;78(5):514–522. doi: 10.1038/ki.2010.172.] [[Google Scholar]
  • 30. Kruidenier L, et al A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488(7411):404–408. doi: 10.1038/nature11262.] [[Google Scholar]
  • 31. Herman-Edelstein M, Thomas MC, Thallas-Bonke V, Saleem M, Cooper ME, Kantharidis PDedifferentiation of immortalized human podocytes in response to transforming growth factor-β: a model for diabetic podocytopathy. Diabetes. 2011;60(6):1779–1788. doi: 10.2337/db10-1110.] [[Google Scholar]
  • 32. Heinemann B, et al Inhibition of demethylases by GSK-J1/J4. Nature. 2014;514(7520):E1–E2. doi: 10.1038/nature13688.] [[PubMed][Google Scholar]
  • 33. Saleem MA, et al A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol. 2002;13(3):630–638.[PubMed][Google Scholar]
  • 34. Jaenisch R, Bird AEpigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(suppl):245–254.[PubMed][Google Scholar]
  • 35. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein TThe polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21(13):4330–4336. doi: 10.1128/MCB.21.13.4330-4336.2001.] [[Google Scholar]
  • 36. Varambally S, et al The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–629. doi: 10.1038/nature01075.] [[PubMed][Google Scholar]
  • 37. Lefevre GM, Patel SR, Kim D, Tessarollo L, Dressler GRAltering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet. 2010;6(10):e1001142. doi: 10.1371/journal.pgen.1001142.] [[Google Scholar]
  • 38. Isermann B, et al Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med. 2007;13(11):1349–1358. doi: 10.1038/nm1667.] [[PubMed][Google Scholar]
  • 39. Hasegawa K, et al Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19(11):1496–1504. doi: 10.1038/nm.3363.] [[Google Scholar]
  • 40. Lin CL, et al MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol. 2014;25(8):1698–1709. doi: 10.1681/ASN.2013050527.] [[Google Scholar]
  • 41. Schwanbeck RThe role of epigenetic mechanisms in Notch signaling during development. J Cell Physiol. 2015;230(5):969–981. doi: 10.1002/jcp.24851.] [[PubMed][Google Scholar]
  • 42. Arcipowski KM, Martinez CA, Ntziachristos PHistone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX. Curr Opin Genet Dev. 2016;36:59–67. doi: 10.1016/j.gde.2016.03.010.] [[Google Scholar]
  • 43. Zha L, et al The histone demethylase UTX promotes brown adipocyte thermogenic program via coordinated regulation of H3K27 demethylation and acetylation. J Biol Chem. 2015;290(41):25151–25163. doi: 10.1074/jbc.M115.662650.] [[Google Scholar]
  • 44. Ohtani K, et al Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res. 2011;109(11):1219–1229. doi: 10.1161/CIRCRESAHA.111.247304.] [[PubMed][Google Scholar]
  • 45. Greenfield A, et al The UTX gene escapes X inactivation in mice and humans. Hum Mol Genet. 1998;7(4):737–742. doi: 10.1093/hmg/7.4.737.] [[PubMed][Google Scholar]
  • 46. Xu J, Deng X, Watkins R, Disteche CMSex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci. 2008;28(17):4521–4527. doi: 10.1523/JNEUROSCI.5382-07.2008.] [[Google Scholar]
  • 47. Ntziachristos P, et al Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514(7523):513–517. doi: 10.1038/nature13605.] [[Google Scholar]
  • 48. Miller SA, Mohn SE, Weinmann ASJmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell. 2010;40(4):594–605. doi: 10.1016/j.molcel.2010.10.028.] [[Google Scholar]
  • 49. Berthier CC, et al Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes. 2009;58(2):469–477. doi: 10.2337/db08-1328.] [[Google Scholar]
  • 50. Margueron R, et al Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008;32(4):503–518. doi: 10.1016/j.molcel.2008.11.004.] [[Google Scholar]
  • 51. Felician G, et al Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 2014;115(7):636–649. doi: 10.1161/CIRCRESAHA.115.304517.] [[PubMed][Google Scholar]
  • 52. Zhao E, et al Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95–103.[Google Scholar]
  • 53. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu YWnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol. 2009;20(9):1997–2008. doi: 10.1681/ASN.2009010019.] [[Google Scholar]
  • 54. Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM, Dimmeler SNotch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res. 2007;101(11):1139–1145. doi: 10.1161/CIRCRESAHA.107.151381.] [[PubMed][Google Scholar]
  • 55. Lako M, Strachan T, Bullen P, Wilson DI, Robson SC, Lindsay SIsolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene. 1998;219(1–2):101–110.[PubMed][Google Scholar]
  • 56. Zhang P, Cai Y, Soofi A, Dressler GRActivation of Wnt11 by transforming growth factor-β drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells. J Biol Chem. 2012;287(25):21290–21302. doi: 10.1074/jbc.M112.357202.] [[Google Scholar]
  • 57. Alghamdi TA, et al Janus Kinase 2 regulates transcription factor EB expression and autophagy completion in glomerular podocytes. J Am Soc Nephrol. 2017;28(9):2641–2653. doi: 10.1681/ASN.2016111208.] [[Google Scholar]
  • 58. Jeansson M, Björck K, Tenstad O, Haraldsson BAdriamycin alters glomerular endothelium to induce proteinuria. J Am Soc Nephrol. 2009;20(1):114–122. doi: 10.1681/ASN.2007111205.] [[Google Scholar]
  • 59. Zhao ZL, et al NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep. 2016;6:24704. [Google Scholar]
  • 60. Daehn I, et al Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest. 2014;124(4):1608–1621. doi: 10.1172/JCI71195.] [[Google Scholar]
  • 61. Knutson SK, et al Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13(4):842–854. doi: 10.1158/1535-7163.MCT-13-0773.] [[PubMed][Google Scholar]
  • 62. Advani A, et al Fluorescent microangiography is a novel and widely applicable technique for delineating the renal microvasculature. PLoS One. 2011;6(10):e24695. doi: 10.1371/journal.pone.0024695.] [[Google Scholar]
  • 63. Schindelin J, et al Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019.] [[Google Scholar]
  • 64. Schneider CA, Rasband WS, Eliceiri KWNIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089.] [[Google Scholar]
  • 65. Shankland SJ, Pippin JW, Couser WGComplement (C5b-9) induces glomerular epithelial cell DNA synthesis but not proliferation in vitro. Kidney Int. 1999;56(2):538–548. doi: 10.1046/j.1523-1755.1999.00560.x.] [[PubMed][Google Scholar]
  • 66. Stitt-Cavanagh EM, et al A maladaptive role for EP4 receptors in podocytes. J Am Soc Nephrol. 2010;21(10):1678–1690. doi: 10.1681/ASN.2009121234.] [[Google Scholar]
  • 67. Weibel ER, Gomez DMA principle for counting tissue structures on random sections. J Appl Physiol. 1962;17:343–348.[PubMed][Google Scholar]
  • 68. Batchu SN, et al Prostaglandin I2 receptor agonism preserves β-cell function and attenuates albuminuria through nephrin-dependent mechanisms. Diabetes. 2016;65(5):1398–1409. doi: 10.2337/db15-0783.] [[PubMed][Google Scholar]
  • 69. Endlich N, et al Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol. 2001;12(3):413–422.[PubMed][Google Scholar]
  • 70. Qi W, et al An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol. 2017;13(4):381–388. doi: 10.1038/nchembio.2304.] [[PubMed][Google Scholar]
  • 71. Benyoucef A, et al UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev. 2016;30(5):508–521. doi: 10.1101/gad.276790.115.] [[Google Scholar]
  • 72. Majumder S, et al G-protein-coupled receptor-2-interacting protein-1 controls stalk cell fate by inhibiting Δ-like 4-Notch1 signaling. Cell Rep. 2016;17(10):2532–2541. doi: 10.1016/j.celrep.2016.11.017.] [[Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.