Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.
Journal: 2018/November - Cell Stem Cell
ISSN: 1875-9777
Abstract:
Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-containing scaffold into injured neonatal brains likewise promotes migration and maturation of V-SVZ-derived neuroblasts, leading to functional improvements in impaired gait behaviors. Together these results suggest that RG fibers enable postnatal V-SVZ-derived neuroblasts to migrate toward sites of injury, thereby enhancing neuronal regeneration and functional recovery from neonatal brain injuries.
Relations:
Citations
(7)
Genes
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.