Paternal behavior influences development of aggression and vasopressin expression in male California mouse offspring.
Journal: 2007/February - Hormones and Behavior
ISSN: 0018-506X
Abstract:
Parental care has been demonstrated to have important effects on offspring behavioral development. California mice (Peromyscus californicus) are biparental, and correlational evidence suggests that pup retrieving by fathers has important effects on the development of aggressive behavior and extra-hypothalamic vasopressin systems. We tested whether retrievals affected these systems by manipulating paternal retrieval behavior between day 15 and 21 postpartum. Licking and grooming behavior affect behavioral development in rats, so we also experimentally reduced huddling and grooming behavior by castrating a subset of fathers. Experimentally increasing the frequency of paternal pup retrieving behavior decreased attack latency in resident-intruder in both male and female adult offspring, whereas experimental reduction of huddling and grooming had no effect. In a separate group of male offspring, we examined vasopressin immunoreactivity (AVP-ir) in two regions of the posterior bed nucleus of the stria terminalis (BNST): the dorsal fiber tracts (dBNST) and the ventral cell body-containing region (vBNST). Experimentally increasing retrievals led to an apparent shift in AVP-ir distribution. Specifically, offspring from the high retrieval group had more AVP-ir than offspring from the sham retrieval group in the dBNST, whereas the opposite was observed in the vBNST. Experimental reduction of paternal grooming was associated with increased AVP-ir in the paraventricular nucleus and also increased corticosterone and progesterone, similar to observed effects of maternal grooming on HPA function. This study provides further evidence that paternal behavior influences the development of aggression and associated neural substrates.
Relations:
Citations
(31)
Grants
(108)
Drugs
(2)
Chemicals
(2)
Organisms
(2)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.