Oxygen toxicity, oxygen radicals, transition metals and disease.
Journal: 1984/June - Biochemical Journal
ISSN: 0264-6021
PUBMED: 6326753
Relations:
Content
Citations
(699)
References
(114)
Diseases
(2)
Chemicals
(8)
Organisms
(2)
Similar articles
Articles by the same authors
Discussion board
Biochem J 219(1): 1-14

Oxygen toxicity, oxygen radicals, transition metals and disease.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aisen P, Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. [PubMed] [Google Scholar]
  • Ambruso DR, Johnston RB., Jr Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J Clin Invest. 1981 Feb;67(2):352–360.[PMC free article] [PubMed] [Google Scholar]
  • Archibald FS, Fridovich I. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol. 1981 Jun;146(3):928–936.[PMC free article] [PubMed] [Google Scholar]
  • Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. [PubMed] [Google Scholar]
  • Babior BM. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. [PubMed] [Google Scholar]
  • Bacon BR, Tavill AS, Brittenham GM, Park CH, Recknagel RO. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J Clin Invest. 1983 Mar;71(3):429–439.[PMC free article] [PubMed] [Google Scholar]
  • Bannister JV, Bannister WH, Hill HA, Thornalley PJ. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin. Biochim Biophys Acta. 1982 Mar 15;715(1):116–120. [PubMed] [Google Scholar]
  • Bannister JV, Bellavite P, Davoli A, Thornalley PJ, Rossi F. The generation of hydroxyl radicals following superoxide production by neutrophil NADPH oxidase. FEBS Lett. 1982 Dec 27;150(2):300–302. [PubMed] [Google Scholar]
  • Barber AA, Bernheim F. Lipid peroxidation: its measurement, occurrence, and significance in animal tissues. Adv Gerontol Res. 1967;2:355–403. [PubMed] [Google Scholar]
  • Beauchamp C, Fridovich I. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem. 1970 Sep 25;245(18):4641–4646. [PubMed] [Google Scholar]
  • Bhuyan KC, Bhuyan DK. Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-1H-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye. Biochim Biophys Acta. 1977 May 26;497(3):641–651. [PubMed] [Google Scholar]
  • Bielski BH, Arudi RL, Sutherland MW. A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem. 1983 Apr 25;258(8):4759–4761. [PubMed] [Google Scholar]
  • Birnboim HC. Factors which affect DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Can J Physiol Pharmacol. 1982 Nov;60(11):1359–1366. [PubMed] [Google Scholar]
  • Blake D, Bacon PA. Iron and rheumatoid disease. Lancet. 1982 Mar 13;1(8272):623–623. [PubMed] [Google Scholar]
  • Blake DR, Hall ND, Treby DA, Halliwell B, Gutteridge JM. Protection against superoxide and hydrogen peroxide in synovial fluid from rheumatoid patients. Clin Sci (Lond) 1981 Oct;61(4):483–486. [PubMed] [Google Scholar]
  • Blake DR, Hall ND, Bacon PA, Dieppe PA, Halliwell B, Gutteridge JM. Effect of a specific iron chelating agent on animal models of inflammation. Ann Rheum Dis. 1983 Feb;42(1):89–93.[PMC free article] [PubMed] [Google Scholar]
  • Boyer RF, Schori BE. The incorporation of iron into apoferritin as mediated by ceruloplasmin. Biochem Biophys Res Commun. 1983 Oct 14;116(1):244–250. [PubMed] [Google Scholar]
  • Bozzi A, Mavelli I, Mondovì B, Strom R, Rotilio G. Differential sensitivity of tumor cells to externally generated hydrogen peroxide. Role of glutathione and related enzymes. Cancer Biochem Biophys. 1979;3(3):135–141. [PubMed] [Google Scholar]
  • Brigelius R, Spöttl R, Bors W, Lengfelder E, Saran M, Weser U. Superoxide dismutase activity of low molecular weight Cu2 plus-chelates studied by pulse radiolysis. FEBS Lett. 1974 Oct 1;47(1):72–75. [PubMed] [Google Scholar]
  • Brown DJ, Dawborn JK, Ham KN, Xipell JM. Treatment of dialysis osteomalacia with desferrioxamine. Lancet. 1982 Aug 14;2(8294):343–345. [PubMed] [Google Scholar]
  • Buettner GR, Oberley LW, Leuthauser SW. The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay. Photochem Photobiol. 1978 Oct-Nov;28(4-5):693–695. [PubMed] [Google Scholar]
  • Bullen JJ. The significance of iron in infection. Rev Infect Dis. 1981 Nov-Dec;3(6):1127–1138. [PubMed] [Google Scholar]
  • Butler J, Halliwell B. Reaction of iron-EDTA chelates with the superoxide radical. Arch Biochem Biophys. 1982 Oct 1;218(1):174–178. [PubMed] [Google Scholar]
  • Castranova V, Wright JR, Colby HD, Miles PR. Ascorbate uptake by isolated rat alveolar macrophages and type II cells. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jan;54(1):208–214. [PubMed] [Google Scholar]
  • Cederbaum AI, Dicker E. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine. Biochem J. 1983 Jan 15;210(1):107–113.[PMC free article] [PubMed] [Google Scholar]
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. [PubMed] [Google Scholar]
  • Cole ES, Glass J. Transferrin binding and iron uptake in mouse hepatocytes. Biochim Biophys Acta. 1983 Feb 16;762(1):102–110. [PubMed] [Google Scholar]
  • Davies SC, Marcus RE, Hungerford JL, Miller MH, Arden GB, Huehns ER. Ocular toxicity of high-dose intravenous desferrioxamine. Lancet. 1983 Jul 23;2(8343):181–184. [PubMed] [Google Scholar]
  • DiGuiseppi J, Fridovich I. Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. J Biol Chem. 1982 Apr 25;257(8):4046–4051. [PubMed] [Google Scholar]
  • Etherington DJ, Pugh D, Silver IA. Collagen degradation in an experimental inflammatory lesion: studies on the role of the macrophage. Acta Biol Med Ger. 1981;40(10-11):1625–1636. [PubMed] [Google Scholar]
  • Finkelstein E, Rosen GM, Rauckman EJ, Paxton J. Spin trapping of superoxide. Mol Pharmacol. 1979 Sep;16(2):676–685. [PubMed] [Google Scholar]
  • Floyd RA. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide. Arch Biochem Biophys. 1983 Aug;225(1):263–270. [PubMed] [Google Scholar]
  • Fong KL, McCay PB, Poyer JL, Keele BB, Misra H. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem. 1973 Nov 25;248(22):7792–7797. [PubMed] [Google Scholar]
  • Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. [PubMed] [Google Scholar]
  • Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. [PubMed] [Google Scholar]
  • Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol. 1983;23:239–257. [PubMed] [Google Scholar]
  • Fridovich SE, Porter NA. Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide. J Biol Chem. 1981 Jan 10;256(1):260–265. [PubMed] [Google Scholar]
  • Greenwald RA, Moy WW. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum. 1980 Apr;23(4):455–463. [PubMed] [Google Scholar]
  • Gutteridge JM. The protective action of superoxide dismutase on metal-ion catalysed peroxidation of phospholipids. Biochem Biophys Res Commun. 1977 Jul 11;77(1):379–386. [PubMed] [Google Scholar]
  • Gutteridge JM. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Lett. 1981 Jun 15;128(2):343–346. [PubMed] [Google Scholar]
  • Gutteridge JM. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts. FEBS Lett. 1982 Dec 27;150(2):454–458. [PubMed] [Google Scholar]
  • Gutteridge JM, Wilkins S. Non-protein-bound iron within bacterial cells and the action of bleomycin. Biochem Int. 1984 Jan;8(1):89–94. [PubMed] [Google Scholar]
  • Gutteridge JM, Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci. 1981;14(4):257–329. [PubMed] [Google Scholar]
  • Gutteridge JM, Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. [PubMed] [Google Scholar]
  • Gutteridge JM, Richmond R, Halliwell B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J. 1979 Nov 15;184(2):469–472.[PMC free article] [PubMed] [Google Scholar]
  • Gutteridge JM, Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981 Oct 1;199(1):263–265.[PMC free article] [PubMed] [Google Scholar]
  • Gutteridge JM, Paterson SK, Segal AW, Halliwell B. Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem J. 1981 Oct 1;199(1):259–261.[PMC free article] [PubMed] [Google Scholar]
  • Gutteridge JM, Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of 'catalytic' iron and anti-oxidant activity in extracellular fluids. Biochem J. 1982 Sep 15;206(3):605–609.[PMC free article] [PubMed] [Google Scholar]
  • Gutteridge JM, Halliwell B, Treffry A, Harrison PM, Blake D. Effect of ferritin-containing fractions with different iron loading on lipid peroxidation. Biochem J. 1983 Feb 1;209(2):557–560.[PMC free article] [PubMed] [Google Scholar]
  • Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett. 1978 Aug 15;92(2):321–326. [PubMed] [Google Scholar]
  • Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Lett. 1978 Dec 15;96(2):238–242. [PubMed] [Google Scholar]
  • Halliwell B. Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease? Cell Biol Int Rep. 1982 Jun;6(6):529–542. [PubMed] [Google Scholar]
  • Halliwell B, Gutteridge JM. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. [PubMed] [Google Scholar]
  • Hebbel RP, Eaton JW, Balasingam M, Steinberg MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982 Dec;70(6):1253–1259.[PMC free article] [PubMed] [Google Scholar]
  • Hershko C, Graham G, Bates GW, Rachmilewitz EA. Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br J Haematol. 1978 Oct;40(2):255–263. [PubMed] [Google Scholar]
  • Hill HA. Oxygen, oxidases, and the essential trace metals. Philos Trans R Soc Lond B Biol Sci. 1981 Aug 14;294(1071):119–128. [PubMed] [Google Scholar]
  • Hoe S, Rowley DA, Halliwell B. Reactions of ferrioxamine and desferrioxamine with the hydroxyl radical. Chem Biol Interact. 1982 Jul 15;41(1):75–81. [PubMed] [Google Scholar]
  • Holland MK, Alvarez JG, Storey BT. Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa. Biol Reprod. 1982 Dec;27(5):1109–1118. [PubMed] [Google Scholar]
  • Jacobs A. Iron overload--clinical and pathologic aspects. Semin Hematol. 1977 Jan;14(1):89–113. [PubMed] [Google Scholar]
  • Kaschnitz RM, Hatefi Y. Lipid oxidation in biological membranes. Electron transfer proteins as initiators of lipid autoxidation. Arch Biochem Biophys. 1975 Nov;171(1):292–304. [PubMed] [Google Scholar]
  • Katz ML, Parker KR, Handelman GJ, Bramel TL, Dratz EA. Effects of antioxidant nutrient deficiency on the retina and retinal pigment epithelium of albino rats: a light and electron microscopic study. Exp Eye Res. 1982 Mar;34(3):339–369. [PubMed] [Google Scholar]
  • Kellogg EW, 3rd, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J Biol Chem. 1977 Oct 10;252(19):6721–6728. [PubMed] [Google Scholar]
  • Kirschfeld K. Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc Lond B Biol Sci. 1982 Aug 23;216(1202):71–85. [PubMed] [Google Scholar]
  • Klein SM, Cohen G, Cederbaum AI. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating systems. Biochemistry. 1981 Oct 13;20(21):6006–6012. [PubMed] [Google Scholar]
  • Krinsky NI, Deneke SM. Interaction of oxygen and oxy-radicals with carotenoids. J Natl Cancer Inst. 1982 Jul;69(1):205–210. [PubMed] [Google Scholar]
  • Lai EK, Fong KL, McCay PB. Studies on the properties of the singlet oxygen-like factor produced during lipid peroxidation. Biochim Biophys Acta. 1978 Mar 30;528(3):497–506. [PubMed] [Google Scholar]
  • Lai CS, Grover TA, Piette LH. Hydroxyl radical production in a purified NADPH--cytochrome c (P-450) reductase system. Arch Biochem Biophys. 1979 Apr 1;193(2):373–378. [PubMed] [Google Scholar]
  • Leuthauser SW, Oberley LW, Oberley TD, Sorenson JR, Ramakrishna K. Antitumor effect of a copper coordination compound with superoxide dismutase-like activity. J Natl Cancer Inst. 1981 Jun;66(6):1077–1081. [PubMed] [Google Scholar]
  • Maguire JJ, Kellogg EW, 3rd, Packer L. Protection against free radical formation by protein bound iron. Toxicol Lett. 1982 Nov;14(1-2):27–34. [PubMed] [Google Scholar]
  • Marklund SL, Westman NG, Lundgren E, Roos G. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 1982 May;42(5):1955–1961. [PubMed] [Google Scholar]
  • McCord JM. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. [PubMed] [Google Scholar]
  • McCord JM, Day ED., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. [PubMed] [Google Scholar]
  • Modell B, Letsky EA, Flynn DM, Peto R, Weatherall DJ. Survival and desferrioxamine in thalassaemia major. Br Med J (Clin Res Ed) 1982 Apr 10;284(6322):1081–1084.[PMC free article] [PubMed] [Google Scholar]
  • Morris JG. Fifth Stenhous-Williams memorial lecture. Oxygen and the obligate anaerobe. J Appl Bacteriol. 1976 Jun;40(3):229–244. [PubMed] [Google Scholar]
  • Motohashi N, Mori I. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin. FEBS Lett. 1983 Jun 27;157(1):197–199. [PubMed] [Google Scholar]
  • Muirden KD. The anaemia of rheumatoid arthritis: the significance of iron deposits in the synovial membrane. Australas Ann Med. 1970 May;19(2):97–104. [PubMed] [Google Scholar]
  • Nienhuis AW. Vitamin C and iron. N Engl J Med. 1981 Jan 15;304(3):170–171. [PubMed] [Google Scholar]
  • Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun. 1975 Mar 17;63(2):463–468. [PubMed] [Google Scholar]
  • Nunez MT, Cole ES, Glass J. The reticulocyte plasma membrane pathway of iron uptake as determined by the mechanism of alpha, alpha'-dipyridyl inhibition. J Biol Chem. 1983 Jan 25;258(2):1146–1151. [PubMed] [Google Scholar]
  • Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141–1149. [PubMed] [Google Scholar]
  • O'Brien PJ. Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles. Can J Biochem. 1969 May;47(5):485–492. [PubMed] [Google Scholar]
  • Packer JE, Mahood JS, Mora-Arellano VO, Slater TF, Willson RL, Wolfenden BS. Free radicals and singlet oxygen scavengers: reaction of a peroxy-radical with beta-carotene, diphenyl furan and 1,4-diazobicyclo (2,2,2)-octane. Biochem Biophys Res Commun. 1981 Feb 27;98(4):901–906. [PubMed] [Google Scholar]
  • Petkau A, Monasterski LG, Kelly K, Friesen HG. Modification of superoxide dismutase in rat mammary carcinoma. Res Commun Chem Pathol Pharmacol. 1977 May;17(1):125–132. [PubMed] [Google Scholar]
  • Pickart L, Thaler MM. Growth-modulating tripeptide (glycylhistidyllysine): association with copper and iron in plasma, and stimulation of adhesiveness and growth of hepatoma cells in culture by tripeptide-metal ion complexes. J Cell Physiol. 1980 Feb;102(2):129–139. [PubMed] [Google Scholar]
  • Prime SS, MacDonald DG, Rennie JS. The effect of iron deficiency on experimental oral carcinogenesis in the rat. Br J Cancer. 1983 Mar;47(3):413–418.[PMC free article] [PubMed] [Google Scholar]
  • Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem. 1981 Dec;118(2):328–335. [PubMed] [Google Scholar]
  • Rosen H, Klebanoff SJ. Role of iron and ethylenediaminetetraacetic acid in the bactericidal activity of a superoxide anion-generating system. Arch Biochem Biophys. 1981 May;208(2):512–519. [PubMed] [Google Scholar]
  • Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds. FEBS Lett. 1982 Feb 8;138(1):33–36. [PubMed] [Google Scholar]
  • Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Lett. 1982 Jun 1;142(1):39–41. [PubMed] [Google Scholar]
  • Rowley DA, Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction? Arch Biochem Biophys. 1983 Aug;225(1):279–284. [PubMed] [Google Scholar]
  • Rowley DA, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease. Clin Sci (Lond) 1983 Jun;64(6):649–653. [PubMed] [Google Scholar]
  • Sagone AL, Jr, Decker MA, Wells RM, Democko C. A new method for the detection of hydroxyl radical production by phagocytic cells. Biochim Biophys Acta. 1980 Feb 21;628(1):90–97. [PubMed] [Google Scholar]
  • Samuni A, Chevion M, Czapski G. Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J Biol Chem. 1981 Dec 25;256(24):12632–12635. [PubMed] [Google Scholar]
  • Schafer AI, Cheron RG, Dluhy R, Cooper B, Gleason RE, Soeldner JS, Bunn HF. Clinical consequences of acquired transfusional iron overload in adults. N Engl J Med. 1981 Feb 5;304(6):319–324. [PubMed] [Google Scholar]
  • Searle AJ, Willson RL. Stimulation of microsomal lipid peroxidation by iron and cysteine. Characterization and the role of free radicals. Biochem J. 1983 Jun 15;212(3):549–554.[PMC free article] [PubMed] [Google Scholar]
  • Shires TK. Iron-induced DNA damage and synthesis in isolated rat liver nuclei. Biochem J. 1982 Aug 1;205(2):321–329.[PMC free article] [PubMed] [Google Scholar]
  • Singh A, Singh H, Kremers W, Koroll GW. Involvement of singlet oxygen in biochemical systems. Bull Eur Physiopathol Respir. 1981;17 (Suppl):31–41. [PubMed] [Google Scholar]
  • Kumar KS, Rowse C, Hochstein P. Copper-induced generation of superoxide in human red cell membrane. Biochem Biophys Res Commun. 1978 Jul 28;83(2):587–592. [PubMed] [Google Scholar]
  • Tamura M, Yamazaki I. Reactions of the oxyform of horseradish peroxidase. J Biochem. 1972 Feb;71(2):311–319. [PubMed] [Google Scholar]
  • Tangerås A, Flatmark T, Bäckström D, Ehrenberg A. Mitochondrial iron not bound in heme and iron-sulfur centers. Estimation, compartmentation and redox state. Biochim Biophys Acta. 1980 Feb 8;589(2):162–175. [PubMed] [Google Scholar]
  • Thomas EL, Pera KA. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J Bacteriol. 1983 Jun;154(3):1236–1244.[PMC free article] [PubMed] [Google Scholar]
  • Thomas MJ, Mehl KS, Pryor WA. The role of superoxide in xanthine oxidase-induced autooxidation of linoleic acid. J Biol Chem. 1982 Jul 25;257(14):8343–8347. [PubMed] [Google Scholar]
  • Tien M, Bucher JR, Aust SD. Thiol-dependent lipid peroxidation. Biochem Biophys Res Commun. 1982 Jul 16;107(1):279–285. [PubMed] [Google Scholar]
  • Ward PA, Till GO, Kunkel R, Beauchamp C. Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury. J Clin Invest. 1983 Sep;72(3):789–801.[PMC free article] [PubMed] [Google Scholar]
  • Weinberg ED. Iron and infection. Microbiol Rev. 1978 Mar;42(1):45–66.[PMC free article] [PubMed] [Google Scholar]
  • Weitberg AB, Weitzman SA, Destrempes M, Latt SA, Stossel TP. Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. N Engl J Med. 1983 Jan 6;308(1):26–30. [PubMed] [Google Scholar]
  • Whiting RF, Wei L, Stich HF. Chromosome-damaging activity of ferritin and its relation to chelation and reduction of iron. Cancer Res. 1981 May;41(5):1628–1636. [PubMed] [Google Scholar]
  • Williams MD, Chance B. Spontaneous chemiluminescence of human breath. Spectrum, lifetime, temporal distribution, and correlation with peroxide. J Biol Chem. 1983 Mar 25;258(6):3628–3631. [PubMed] [Google Scholar]
  • Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966 Jun;99(3):667–676.[PMC free article] [PubMed] [Google Scholar]
  • Wills ED. Lipid peroxide formation in microsomes. The role of non-haem iron. Biochem J. 1969 Jun;113(2):325–332.[PMC free article] [PubMed] [Google Scholar]
  • Winterbourn CC. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals. Biochem J. 1979 Aug 15;182(2):625–628.[PMC free article] [PubMed] [Google Scholar]
  • Winterbourn CC. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem J. 1981 Jul 15;198(1):125–131.[PMC free article] [PubMed] [Google Scholar]
  • Winterbourn CC. Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent. Biochem J. 1983 Jan 15;210(1):15–19.[PMC free article] [PubMed] [Google Scholar]
  • Zigler JS, Jr, Goosey JD. Photosensitized oxidation in the ocular lens: evidence for photosensitizers endogenous to the human lens. Photochem Photobiol. 1981 Jun;33(6):869–874. [PubMed] [Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.