New insights into mitochondrial fusion.
Journal: 2007/July - FEBS Letters
ISSN: 0014-5793
Abstract:
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.
Relations:
Content
Citations
(20)
References
(52)
Chemicals
(6)
Processes
(2)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
FEBS Lett 581(11): 2168-2173

New insights into mitochondrial fusion

Division of Biology, California Institute of Technology, Pasadena, CA 91125
Contact information: California Institute of Technology, Division of Biology, MC114-96, Pasadena, CA 91125, Tel: (626) 395-2670, Fax: (626) 395-8826, Email: ude.hcetlac@nahcd
Publisher's Disclaimer

Abstract

Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.

Keywords: mitochondrial dynamics, mitochondrial morphology, membrane fusion
Abstract

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Footnotes

References

  • 1. Bereiter-Hahn J, Voth MDynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994;27:198–219.[PubMed][Google Scholar]
  • 2. Zuchner S, et al Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36:449–51.[PubMed][Google Scholar]
  • 3. Delettre C, et al Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26:207–10.[PubMed][Google Scholar]
  • 4. Alexander C, et al OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26:211–5.[PubMed][Google Scholar]
  • 5. Chan DCMitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.[PubMed][Google Scholar]
  • 6. Okamoto K, Shaw JMMitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503–36.[PubMed][Google Scholar]
  • 7. Hales KG, Fuller MTDevelopmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 1997;90:121–9.[PubMed][Google Scholar]
  • 8. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JMMitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol. 1998;143:359–73.[Google Scholar]
  • 9. Santel A, Fuller MTControl of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114:867–74.[PubMed][Google Scholar]
  • 10. Rojo M, Legros F, Chateau D, Lombes AMembrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci. 2002;115:1663–74.[PubMed][Google Scholar]
  • 11. Fritz S, Rapaport D, Klanner E, Neupert W, Westermann BConnection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J Cell Biol. 2001;152:683–92.[Google Scholar]
  • 12. Rojo M, Legros F, Chateau D, Lombès AMembrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci. 2002;115:1663–74.[PubMed][Google Scholar]
  • 13. Rapaport D, Brunner M, Neupert W, Westermann BFzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J Biol Chem. 1998;273:20150–5.[PubMed][Google Scholar]
  • 14. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DCMitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189–200.[Google Scholar]
  • 15. Chen H, Chomyn A, Chan DCDisruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280:26185–92.[PubMed][Google Scholar]
  • 16. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano LOPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101:15927–32.[Google Scholar]
  • 17. Ishihara N, Eura Y, Mihara KMitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004;117:6535–46.[PubMed][Google Scholar]
  • 18. Youle RJ, Karbowski MMitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6:657–63.[PubMed][Google Scholar]
  • 19. Karbowski M, et al Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. 2002;159:931–8.[Google Scholar]
  • 20. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJThe role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1:515–25.[PubMed][Google Scholar]
  • 21. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJRoles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. 2004;15:5001–11.[Google Scholar]
  • 22. Sugioka R, Shimizu S, Tsujimoto YFzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem. 2004;279:52726–34.[PubMed][Google Scholar]
  • 23. Frezza C, et al OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126:177–89.[PubMed][Google Scholar]
  • 24. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers GLoss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003;278:7743–6.[PubMed][Google Scholar]
  • 25. Escobar-Henriques M, Westermann B, Langer TRegulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J Cell Biol. 2006;173:645–50.[Google Scholar]
  • 26. Neutzner A, Youle RJInstability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J Biol Chem. 2005;280:18598–603.[PubMed][Google Scholar]
  • 27. Fritz S, Weinbach N, Westermann BMdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol Biol Cell. 2003;14:2303–13.[Google Scholar]
  • 28. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJRole of Bax and Bak in mitochondrial morphogenesis. Nature. 2006;443:658–62.[PubMed][Google Scholar]
  • 29. Eura Y, Ishihara N, Oka T, Mihara KIdentification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci 2006[PubMed][Google Scholar]
  • 30. Hajek P, Chomyn A, Attardi GIdentification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J Biol Chem 2006[PubMed][Google Scholar]
  • 31. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose SMARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006;7:1019–22.[Google Scholar]
  • 32. Bonifacino JS, Glick BSThe mechanisms of vesicle budding and fusion. Cell. 2004;116:153–66.[PubMed][Google Scholar]
  • 33. Jahn R, Scheller RHSNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–43.[PubMed][Google Scholar]
  • 34. Grosshans BL, Ortiz D, Novick PRabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006;103:11821–7.[Google Scholar]
  • 35. Sztul E, Lupashin VRole of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol. 2006;290:C11–26.[PubMed][Google Scholar]
  • 36. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JESNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362:318–24.[PubMed][Google Scholar]
  • 37. Eura Y, Ishihara N, Yokota S, Mihara KTwo mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem (Tokyo) 2003;134:333–44.[PubMed][Google Scholar]
  • 38. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DCStructural basis of mitochondrial tethering by mitofusin complexes. Science. 2004;305:858–62.[PubMed][Google Scholar]
  • 39. Honda S, Aihara T, Hontani M, Okubo K, Hirose SMutational analysis of action of mitochondrial fusion factor mitofusin-2. J Cell Sci. 2005;118:3153–61.[PubMed][Google Scholar]
  • 40. Griffin EE, Chan DCDomain interactions within Fzo1 oligomers are essential for mitochondrial fusion. J Biol Chem. 2006;281:16599–606.[PubMed][Google Scholar]
  • 41. Meeusen S, McCaffery JM, Nunnari JMitochondrial fusion intermediates revealed in vitro. Science. 2004;305:1747–52.[PubMed][Google Scholar]
  • 42. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MAA common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol. 2006;8:1255–1262.[PubMed][Google Scholar]
  • 43. Sesaki H, Southard SM, Yaffe MP, Jensen REMgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol Biol Cell. 2003;14:2342–56.[Google Scholar]
  • 44. Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A, Nunnari JThe intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol. 2003;160:303–11.[Google Scholar]
  • 45. Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AMLoss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 2004;279:18792–8.[PubMed][Google Scholar]
  • 46. Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, Nunnari JThe dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000;151:341–52.[Google Scholar]
  • 47. Herlan M, Bornhovd C, Hell K, Neupert W, Reichert ASAlternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol. 2004;165:167–73.[Google Scholar]
  • 48. McQuibban GA, Saurya S, Freeman MMitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature. 2003;423:537–41.[PubMed][Google Scholar]
  • 49. Sesaki H, Dunn CD, Iijima M, Shepard KA, Yaffe MP, Machamer CE, Jensen REUps1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J Cell Biol. 2006;173:651–8.[Google Scholar]
  • 50. Delettre C, et al Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet. 2001;109:584–91.[PubMed][Google Scholar]
  • 51. Cipolat S, et al Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126:163–75.[PubMed][Google Scholar]
  • 52. Ishihara N, Fujita Y, Oka T, Mihara KRegulation of mitochondrial morphology through proteolytic cleavage of OPA1. Embo J. 2006;25:2966–77.[Google Scholar]
  • 53. Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, Nunnari JMitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell. 2006;127:383–95.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.