Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans.
Journal: 2002/May - Journal of Biological Chemistry
ISSN: 0021-9258
Abstract:
The core 3 structure of the O-glycan, GlcNAcbeta1-3GalNAcalpha1-serine/threonine, an important precursor in the biosynthesis of mucin-type glycoproteins, is synthesized by UDP-N-acetylglucosamine:GalNAc-peptide beta1,3-N- acetylglucosaminyltransferase (beta3Gn-T; core 3 synthase). The core 3 structure is restricted in its occurrence to mucins from specific tissues such as the stomach, small intestine, and colon. A partial sequence encoding a novel member of the human beta3Gn-T family was found in one of the data bases. We cloned a complementary DNA of this gene and named it beta3Gn-T6. The putative amino acid sequence of beta3Gn-T6 retains the beta3Gn-T motifs and is predicted to comprise a typical type II membrane protein. The soluble form of beta3Gn-T6 expressed in insect cells showed beta3Gn-T activity toward GalNAcalpha-p-nitrophenyl and GalNAcalpha1-serine/threonine. The beta1,3-linkage between GlcNAc and GalNAc of the enzyme reaction product was confirmed by high performance liquid chromatography and NMR analyses. beta3Gn-T6 effectively transferred a GlcNAc to the GalNAc residue on MUC1 mucin, resulting in the synthesis of a core 3 structure. Real time PCR analysis revealed that the beta3Gn-T6 transcript was restricted in its distribution, mainly to the stomach, colon, and small intestine. We concluded that beta3Gn-T6 is the most logical candidate for the core 3 synthase, which plays an important role in the synthesis of mucin-type O-glycans in digestive organs.
Relations:
Citations
(34)
Pathways
(1)
Drugs
(1)
Chemicals
(3)
Genes
(1)
Organisms
(1)
Processes
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.