Mammalian mitogenomic relationships and the root of the eutherian tree.
Journal: 2002/August - Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
Abstract:
The strict orthology of mitochondrial (mt) coding sequences has promoted their use in phylogenetic analyses at different levels. Here we present the results of a mitogenomic study (i.e., analysis based on the set of protein-coding genes from complete mt genomes) of 60 mammalian species. This number includes 11 new mt genomes. The sampling comprises all but one of the traditional eutherian orders. The previously unrepresented order Dermoptera (flying lemurs) fell within Primates as the sister group of Anthropoidea, making Primates paraphyletic. This relationship was strongly supported. Lipotyphla ("insectivores") split into three distinct lineages: Erinaceomorpha, Tenrecomorpha, and Soricomorpha. Erinaceomorpha was the basal eutherian lineage. Sirenia (dugong) and Macroscelidea (elephant shrew) fell within the African clade. Pholidota (pangolin) joined the Cetferungulata as the sister group of Carnivora. The analyses identified monophyletic Pinnipedia with Otariidae (sea lions, fur seals) and Odobenidae (walruses) as sister groups to the exclusion of Phocidae (true seals).
Relations:
Content
Citations
(89)
References
(47)
Genes
(13)
Organisms
(3)
Processes
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Proc Natl Acad Sci U S A 99(12): 8151-8156

Mammalian mitogenomic relationships and the root of the eutherian tree

Division of Evolutionary Molecular Systematics, University of Lund, S-223 62 Lund, Sweden; Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria; Greenland Institute of Natural Resources, DK-3900 Nuuk, Greenland; Faculty of Resource Science and Technology, University of Malaysia, Sarawak, Kota Samarahan 94300, Malaysia; Department of Obstetrics and Gynaecology, University of Melbourne, Victoria 3053, Australia; and Astra Zeneca, S-431 83 Mölndal, Sweden
To whom reprint requests should be addressed. E-mail: es.ul.neg@nosanra.ruflu.
Communicated by Oscar D. Ratnoff, Case Western Reserve University, Cleveland, OH
Communicated by Oscar D. Ratnoff, Case Western Reserve University, Cleveland, OH
Received 2001 Dec 4; Accepted 2002 Mar 20.

Abstract

The strict orthology of mitochondrial (mt) coding sequences has promoted their use in phylogenetic analyses at different levels. Here we present the results of a mitogenomic study (i.e., analysis based on the set of protein-coding genes from complete mt genomes) of 60 mammalian species. This number includes 11 new mt genomes. The sampling comprises all but one of the traditional eutherian orders. The previously unrepresented order Dermoptera (flying lemurs) fell within Primates as the sister group of Anthropoidea, making Primates paraphyletic. This relationship was strongly supported. Lipotyphla (“insectivores”) split into three distinct lineages: Erinaceomorpha, Tenrecomorpha, and Soricomorpha. Erinaceomorpha was the basal eutherian lineage. Sirenia (dugong) and Macroscelidea (elephant shrew) fell within the African clade. Pholidota (pangolin) joined the Cetferungulata as the sister group of Carnivora. The analyses identified monophyletic Pinnipedia with Otariidae (sea lions, fur seals) and Odobenidae (walruses) as sister groups to the exclusion of Phocidae (true seals).

Keywords: Dermosimii‖Eutheria‖Mammalia‖phylogeny‖primate paraphyly
Abstract

Mitogenomic (mtg) phylogenetics has contributed considerably to resolving evolutionary relationships among mammals. However, relatively few genomes have been sequenced for some orders and others are still unrepresented. The first eutherian mtg study (1) included five orders: Rodentia, Primates, Artiodactyla, Cetacea, and Carnivora. This study identified a sister group relationship between Artiodactyla and Cetacea and close affinities between these two orders and Carnivora. Because of the absence of an unequivocal outgroup (OG), the relationships relative to Primates and Rodentia could not be resolved, however. The first mtg rooting of the eutherian tree (2), using a marsupial as OG, reconstructed the relationship OG(Rodentia,(Primates,(Carnivora,(Artiodactyla,Cetacea)))), a topology that has been generally identified in subsequent mtg analyses. These two studies also showed that individual mitochondrial (mt) genes did not obligatorily reconstruct the same topology, underlining the necessity of using the concatenated sequences of different genes for maximizing the reliability of the analyses.

Most taxonomic schemes recognize 18 orders of extant eutherians (Table (Table1).1). It is likely, however, that this number is an underestimate because most molecular studies, both mtg (3, 4) and mt/nuclear (57), split Lipotyphla into separate lineages. Similarly, if Rodentia is nonmonophyletic (811), the number of eutherian orders may be still greater than suggested by only lipotyphlan polyphyly.

Table 1

Mammalian taxa analyzed

Monotremata, monotremes
Ornithorhynchus anatinus (platypus, {"type":"entrez-nucleotide","attrs":{"text":"X83427","term_id":"1469249","term_text":"X83427"}}X83427)
Tachyglossus aculeatus (echidna, {"type":"entrez-nucleotide","attrs":{"text":"AJ303116","term_id":"17932764","term_text":"AJ303116"}}AJ303116)
Marsupialia, marsupials
Didelphis virginiana (opossum, {"type":"entrez-nucleotide","attrs":{"text":"Z29573","term_id":"452251","term_text":"Z29573"}}Z29573)
Macropus robustus (wallaroo, {"type":"entrez-nucleotide","attrs":{"text":"Y10524","term_id":"1850861","term_text":"Y10524"}}Y10524)
Vombatus ursinus (wombat, {"type":"entrez-nucleotide","attrs":{"text":"AJ304828","term_id":"56399120","term_text":"AJ304828"}}AJ304828)
Trichosurus vulpecula (brushtailed possum, {"type":"entrez-nucleotide","attrs":{"text":"AF357238","term_id":"13752501","term_text":"AF357238"}}AF357238)
Isoodon macrourus (bandicoot, {"type":"entrez-nucleotide","attrs":{"text":"AF358864","term_id":"13676803","term_text":"AF358864"}}AF358864)
Eutheria
Erinaceomorpha, hedgehogs, moon rats
Erinaceus europaeus (hedgehog, {"type":"entrez-nucleotide","attrs":{"text":"X88898","term_id":"19032255","term_text":"X88898"}}X88898)
Echinosorex gymnurus (moon rat, {"type":"entrez-nucleotide","attrs":{"text":"AF348079","term_id":"14495261","term_text":"AF348079"}}AF348079)
Rodentia, rodents
Rattus norvegicus (brown rat, {"type":"entrez-nucleotide","attrs":{"text":"AJ428514","term_id":"19577313","term_text":"AJ428514"}}AJ428514)
Mus musculus (mouse, {"type":"entrez-nucleotide","attrs":{"text":"J01420","term_id":"342520","term_text":"J01420"}}J01420)
Cavia porcellus (guinea pig, {"type":"entrez-nucleotide","attrs":{"text":"AJ222767","term_id":"5679797","term_text":"AJ222767"}}AJ222767)
Thryonomys swinderianus (cane rat, {"type":"entrez-nucleotide","attrs":{"text":"AJ301644","term_id":"12657496","term_text":"AJ301644"}}AJ301644)
Glis glis (fat dormouse, {"type":"entrez-nucleotide","attrs":{"text":"Y11137","term_id":"2956662","term_text":"Y11137"}}Y11137)
Sciurus vulgaris (squirrel, {"type":"entrez-nucleotide","attrs":{"text":"AJ238588","term_id":"8347068","term_text":"AJ238588"}}AJ238588)
Volemys kikuchii (Taiwan vole, {"type":"entrez-nucleotide","attrs":{"text":"AF348082","term_id":"14599791","term_text":"AF348082"}}AF348082)
Primates, lemurs, lorises, tarsiers, monkeys, apes
Nycticebus coucang (slow loris, {"type":"entrez-nucleotide","attrs":{"text":"AJ309867","term_id":"13940431","term_text":"AJ309867"}}AJ309867)
Lemur catta (ring-tailed lemur, {"type":"entrez-nucleotide","attrs":{"text":"AJ421451","term_id":"21425353","term_text":"AJ421451"}}AJ421451)
Tarsius bancanus (tarsier, {"type":"entrez-nucleotide","attrs":{"text":"AF348159","term_id":"14582815","term_text":"AF348159"}}AF348159)
Cebus albifrons (pale-fronted capuchin, {"type":"entrez-nucleotide","attrs":{"text":"AJ309866","term_id":"13940255","term_text":"AJ309866"}}AJ309866)
Papio hamadryas (hamadryas baboon, {"type":"entrez-nucleotide","attrs":{"text":"Y18001","term_id":"4049475","term_text":"Y18001"}}Y18001)
Hylobates lar (gibbon, {"type":"entrez-nucleotide","attrs":{"text":"X99256","term_id":"1632801","term_text":"X99256"}}X99256)
Pongo abelii (Sumatran orangutan, {"type":"entrez-nucleotide","attrs":{"text":"X97707","term_id":"1743294","term_text":"X97707"}}X97707)
Gorilla gorilla (gorilla, {"type":"entrez-nucleotide","attrs":{"text":"X93347","term_id":"1304307","term_text":"X93347"}}X93347)
Homo sapiens (human, {"type":"entrez-nucleotide","attrs":{"text":"X93334","term_id":"1262342","term_text":"X93334"}}X93334)
Dermoptera, flying lemurs
Cynocephalus variegatus (flying lemur, {"type":"entrez-nucleotide","attrs":{"text":"AJ428849","term_id":"21425438","term_text":"AJ428849"}}AJ428849)
Lagomorpha, pikas, hares, rabbits
Ochotona collaris (pika, {"type":"entrez-nucleotide","attrs":{"text":"AF348080","term_id":"14599763","term_text":"AF348080"}}AF348080)
Oryctolagus cuniculus (rabbit, {"type":"entrez-nucleotide","attrs":{"text":"AJ001588","term_id":"3293006","term_text":"AJ001588"}}AJ001588)
Lepus europaeus (brown hare, {"type":"entrez-nucleotide","attrs":{"text":"AJ421471","term_id":"21425393","term_text":"AJ421471"}}AJ421471)
Scandentia, tree shrews
Tupaia belangeri (tree shrew, {"type":"entrez-nucleotide","attrs":{"text":"AJ421453","term_id":"21425539","term_text":"AJ421453"}}AJ421453, {"type":"entrez-nucleotide","attrs":{"text":"AF217811","term_id":"9957733","term_text":"AF217811"}}AF217811)
Chiroptera, bats
Artibeus jamaicensis (Jamaican fruit bat, {"type":"entrez-nucleotide","attrs":{"text":"AF061340","term_id":"4164474","term_text":"AF061340"}}AF061340)
Chalinolobus tuberculatus (NZ long-tailed bat, {"type":"entrez-nucleotide","attrs":{"text":"AF321051","term_id":"11545689","term_text":"AF321051"}}AF321051)
Pteropus scapulatus (little red flying fox, {"type":"entrez-nucleotide","attrs":{"text":"AF321050","term_id":"11545675","term_text":"AF321050"}}AF321050)
Soricomorpha, moles, shrews
Talpa europaea (European mole, {"type":"entrez-nucleotide","attrs":{"text":"Y19192","term_id":"6851065","term_text":"Y19192"}}Y19192)
Soriculus fumidus (Asiatic shrew, {"type":"entrez-nucleotide","attrs":{"text":"AF348081","term_id":"14599777","term_text":"AF348081"}}AF348081)
Pholidota, pangolins
Manis tetradactyla (long-tailed pangolin, {"type":"entrez-nucleotide","attrs":{"text":"AJ421454","term_id":"21425380","term_text":"AJ421454"}}AJ421454)
Carnivora, carnivores
Felis catus (cat, {"type":"entrez-nucleotide","attrs":{"text":"U20753","term_id":"1098523","term_text":"U20753"}}U20753)
Canis familiaris (dog, {"type":"entrez-nucleotide","attrs":{"text":"U96639","term_id":"7534303","term_text":"U96639"}}U96639)
Ursus maritimus (polar bear, {"type":"entrez-nucleotide","attrs":{"text":"AJ428577","term_id":"21425552","term_text":"AJ428577"}}AJ428577)
Odobenus rosmarus (walrus, {"type":"entrez-nucleotide","attrs":{"text":"AJ428576","term_id":"32440909","term_text":"AJ428576"}}AJ428576)
Eumetopias jubatus (northern sea lion, {"type":"entrez-nucleotide","attrs":{"text":"AJ428578","term_id":"32451255","term_text":"AJ428578"}}AJ428578)
Halichoerus grypus (grey seal, {"type":"entrez-nucleotide","attrs":{"text":"X72004","term_id":"414757","term_text":"X72004"}}X72004)
Perissodactyla, horses, tapirs, rhinoceroses
Equus caballus (horse, {"type":"entrez-nucleotide","attrs":{"text":"X79547","term_id":"577571","term_text":"X79547"}}X79547)
Equus asinus (donkey, {"type":"entrez-nucleotide","attrs":{"text":"X97337","term_id":"1805746","term_text":"X97337"}}X97337)
Rhinoceros unicornis (Indian rhinoceros, {"type":"entrez-nucleotide","attrs":{"text":"X97336","term_id":"1666193","term_text":"X97336"}}X97336)
Ceratotherium simum (white rhinoceros, {"type":"entrez-nucleotide","attrs":{"text":"Y07726","term_id":"2052151","term_text":"Y07726"}}Y07726)
Artiodactyla, pigs, camels, ruminants, hippopotamuses
Bos taurus (cow, {"type":"entrez-nucleotide","attrs":{"text":"J01394","term_id":"336430","term_text":"J01394"}}J01394)
Ovis aries (sheep, {"type":"entrez-nucleotide","attrs":{"text":"AF010406","term_id":"3445513","term_text":"AF010406"}}AF010406)
Sus scrofa (pig, {"type":"entrez-nucleotide","attrs":{"text":"AJ002189","term_id":"4220565","term_text":"AJ002189"}}AJ002189)
Lama pacos (alpaca, {"type":"entrez-nucleotide","attrs":{"text":"Y19184","term_id":"9558343","term_text":"Y19184"}}Y19184)
Hippopotamus amphibius (hippopotamus, {"type":"entrez-nucleotide","attrs":{"text":"AJ010957","term_id":"4127863","term_text":"AJ010957"}}AJ010957)
Cetacea, whales, dolphins, porpoises
Balaenoptera physalus (fin whale, {"type":"entrez-nucleotide","attrs":{"text":"X61145","term_id":"12772","term_text":"X61145"}}X61145)
Physeter macrocephalus (sperm whale, {"type":"entrez-nucleotide","attrs":{"text":"AJ277029","term_id":"29788163","term_text":"AJ277029"}}AJ277029)
Xenarthra, sloths, armadillos, anteaters
Dasypus novemcinctus (nine banded armadillo, {"type":"entrez-nucleotide","attrs":{"text":"Y11832","term_id":"2252500","term_text":"Y11832"}}Y11832)
Tamandua tetradactyla (lesser anteater, {"type":"entrez-nucleotide","attrs":{"text":"AJ421450","term_id":"21425525","term_text":"AJ421450"}}AJ421450)
Macroscelidea, elephant shrews
Macroscelides proboscideus (elephant shrew, {"type":"entrez-nucleotide","attrs":{"text":"AJ421452","term_id":"21425367","term_text":"AJ421452"}}AJ421452)
Proboscidea, elephants
Loxodonta africana (African elephant, {"type":"entrez-nucleotide","attrs":{"text":"AJ224821","term_id":"3021460","term_text":"AJ224821"}}AJ224821)
Sirenia, dugong, manatees
Dugong dugon (dugong, {"type":"entrez-nucleotide","attrs":{"text":"AJ421723","term_id":"17826747","term_text":"AJ421723"}}AJ421723)
Tubulidentata, aardvark
Orycteropus afer (aardvark, {"type":"entrez-nucleotide","attrs":{"text":"Y18475","term_id":"4691353","term_text":"Y18475"}}Y18475)
Tenrecomorpha, tenrecs, golden moles
Echinops telfairi (lesser hedgehog tenrec, {"type":"entrez-nucleotide","attrs":{"text":"AJ400734","term_id":"32452349","term_text":"AJ400734"}}AJ400734)
(Hyracoidea, hyraxes, not represented as yet)

Accession nos. of new mtDNAs are shown in bold. The sequence of the hedgehog has been corrected compared to the original submission. The sequence of the brown rat is from a wild-caught animal. Erinaceomorpha, Tenrecomorpha, and Soricomorpha are traditionally included in the Lipotyphla.

Five eutherian orders are previously not represented by complete mtDNAs. To further complete the picture of eutherian mtg relationships we have added 11 complete mtDNAs to the eutherian data set, including four of these orders: Pholidota, Dermoptera, Sirenia, and Macroscelidea.

The phylogenetic position of Pholidota has been a matter of debate. A sister group relationship between Xenarthra and Pholidota in a basal position in the eutherian tree has been proposed (e.g., ref. 12). However, other authors (13) have challenged this proposal. Most morphological studies place Xenarthra at or close to the base of the eutherian tree and the term Epitheria has been coined for all eutherians except Xenarthra (14) or, alternatively, all eutherians except Xenarthra and Pholidota. Thus, the positions of Xenarthra and Pholidota are fundamental to the discussion of eutherian evolution. Xenarthra is currently represented by a single mtDNA, that of the armadillo. To examine the position of Xenarthra on the basis of more comprehensive sequence data we here add the mt genome of the lesser anteater to the mtg data set.

Also, the phylogenetic position of Macroscelidea has been contentious. For example, Simpson (15) joined Macroscelidea and Lipotyphla as sister groups in “Insectivora.” Other morphological proposals have joined Macroscelidea, Lagomorpha, and Rodentia on a common branch, a view endorsed by McKenna and Bell (16), who included this grouping in the Anagalida along with some extinct orders.

The morphological affinities between Proboscidea and Sirenia are well documented (e.g., ref. 17). The mt genome of the dugong allows firmer establishment of the position of Sirenia than was possible in a previous cyt b study (18).

The grouping of Primates, Dermoptera, Scandentia (tree shrews), and Chiroptera (bats) into the superordinal clade Archonta has been favored by morphologists (16). To examine the relationships between Primates and their presumed closest relatives we have added the flying lemur to the mtg sampling. The order Primates includes three basal lineages, Prosimii, Tarsioidea, and Anthropoidea. Anthropoidea is well represented by mtg data, but only one prosimian mt genome (Nycticebus coucang) has been described (19). The addition of the ring-tailed lemur to the data set splits the prosimian branch, allowing extended study of basal primate relationships in conjunction with the recent release of a tarsier sequence.

We add also the mt genomes of the brown hare (Lagomorpha), the tree shrew, the polar bear, the northern sea lion, and the walrus. Lagomorpha is currently represented by the mt genomes of the rabbit and the pika. The brown hare completes the sampling, providing additional data for analysis of the Glires hypothesis, which posits a sister group relationship between Rodentia and Lagomorpha. The phylogenetic position of the Scandentia has been studied (20) but the current taxon sampling has allowed further analysis of its position.

Pinniped relationships are of a particular interest because of the distinct difference between molecular results and recent morphological views (e.g., ref. 21) that posit a sister group relationship between Phocidae and Odobenidae to the exclusion of Otariidae. However, this proposal is inconsistent with chromosomal data (22) and analyses of cyt b and 12S rRNA sequences (2325). The mtDNAs of the walrus, sea lion, and polar bear allow a firmer analysis of pinniped relationships than was previously possible.

Accession nos. of new mtDNAs are shown in bold. The sequence of the hedgehog has been corrected compared to the original submission. The sequence of the brown rat is from a wild-caught animal. Erinaceomorpha, Tenrecomorpha, and Soricomorpha are traditionally included in the Lipotyphla.

The probability values according to the SH test for alternative relationships relative to the best likelihood tree based on amino acid sequences (Fig. (Fig.1)1) are shown next to the differences in log-likelihood values, the number of amino acid substitutions (steps), and their SDs. Anth, Anthropoidea; Art, Artiodactyla; Cet, Cetacea; Derm, Dermoptera; Pro, Prosimii; Tars, Tarsioidea.

A dash (—) indicates that this branch was not or differently resolved. LBP, local bootstrap probability; NJ, neighbor joining; FIT, fitch; MP, maximum parsimony; PUZ, tree-puzzle.

Acknowledgments

We thank François Catzeflis, Wilfried W. de Jong, the late Francis H. Fay, Eberhart Fuchs, Carsten Grøndahl, and Lars Olsson for samples. We also thank Kerryn Slack for valuable help with the manuscript. This study was supported by the Swedish Research Council, European Commission Grant ERB-FMRX-CT98-0221, the Crawford Foundation, and by the Nilsson–Ehle Foundation.

Acknowledgments

Abbreviations

MLmaximum likelihood
mtmitochondrial
mtgmitogenomic
MYmillion years
OGoutgroup
Abbreviations

Footnotes

Data deposition: The sequences reported in this paper have been deposited in the EMBL database (see Table Table11 for accession nos.).

Footnotes

References

  • 1. Arnason U, Johnsson E. J Mol Evol. 1992;34:493–505.[PubMed]
  • 2. Janke A, Feldmaier-Fuchs G, Thomas W K, von Haeseler A, Pääbo S. Genetics. 1994;137:243–256.
  • 3. Mouchaty S K, Gullberg A, Janke A, Arnason U. Mol Biol Evol. 2000;17:60–67.[PubMed]
  • 4. Mouchaty S K, Gullberg A, Janke A, Arnason U. Zool Scr. 2000;29:307–317.[PubMed]
  • 5. Madsen O, Scally M, Douady C J, Kao D J, DeBry R W, Adkins R, Amrine H M, Stanhope M J, de Jong W W, Springer M S. Nature (London) 2001;409:610–614.[PubMed]
  • 6. Murphy W J, Eizirik E, Johnson W E, Zhang Y P, Ryder O A, O'Brien S J. Nature (London) 2001;409:614–618.[PubMed]
  • 7. Murphy W J, Eizirik E, O'Brien S J, Madsen O, Scally M, Douady C J, Teeling E, Ryder O A, Stanhope M J, de Jong W W, Springer M S. Science. 2001;294:2348–2351.[PubMed]
  • 8. Graur D, Hide A H, Li W H. Nature (London) 1991;351:649–652.[PubMed]
  • 9. D'Erchia A M, Gissi C, Pesole G, Saccone C, Arnason U. Nature (London) 1996;381:597–600.[PubMed]
  • 10. Reyes A, Pesole G, Saccone C. Gene. 2000;259:177–187.[PubMed]
  • 11. Mouchaty S K, Catzeflis F, Janke A, Arnason U. Mol Phylogenet Evol. 2001;18:127–135.[PubMed]
  • 12. Novacek M J. Nature (London) 1992;356:121–125.[PubMed]
  • 13. Rose K D, Emry R J In: Mammal Phylogeny 2, Placentals. Szalay F S, Novacek M J, McKenna M C, editors. New York: Springer; 1993. pp. 81–102. [PubMed][Google Scholar]
  • 14. McKenna M C In: Phylogeny of the Primates. Luckett W P, Szalay F S, editors. New York: Plenum; 1975. pp. 21–46. [PubMed][Google Scholar]
  • 15. Simpson G G. Bull Am Mus Nat Hist. 1945;85:1–350.[PubMed]
  • 16. McKenna M C, Bell S K Classification of Mammals Above the Species Level. New York: Columbia Univ. Press; 1997. [PubMed][Google Scholar]
  • 17. Gaeth A P, Short R V, Renfree M B. Proc Natl Acad Sci USA. 1999;96:5555–5558.
  • 18. Irwin D M, Arnason U. J Mamm Evol. 1994;2:37–55.[PubMed]
  • 19. Arnason U, Gullberg A, Schweizer Burguete A, Janke A. Hereditas. 2000;133:217–228.[PubMed]
  • 20. Schmitz J, Ohme M, Zischler H. Mol Biol Evol. 2000;17:1334–1343.[PubMed]
  • 21. Wyss A R, Flynn J In: Mammal Phylogeny 2, Placentals. Szalay F S, Novacek M J, McKenna M C, editors. New York: Springer; 1993. pp. 32–52. [PubMed][Google Scholar]
  • 22. Arnason U. Hereditas. 1977;87:227–242.[PubMed]
  • 23. Arnason U, Bodin K, Gullberg A, Ledje C, Mouchaty S. J Mol Evol. 1995;40:78–85.[PubMed]
  • 24. Ledje C, Arnason U. J Mol Evol. 1996;43:641–649.[PubMed]
  • 25. Ledje C, Arnason U. J Mol Evol. 1996;42:135–144.[PubMed]
  • 26. Arnason U, Gullberg A, Widegren B. J Mol Evol. 1991;33:556–568.[PubMed]
  • 27. Strimmer K, von Haeseler A. Mol Biol Evol. 1996;13:964–969.[PubMed]
  • 28. Felsenstein J PHYLIP. Seattle: Univ. of Washington; 1993. [PubMed][Google Scholar]
  • 29. Adachi J, Hasegawa M. Comput Sci Monogr. 1996;28:1–150.[PubMed]
  • 30. Swofford D L PAUP. Sunderland, MA: Sinauer; 2000. [PubMed][Google Scholar]
  • 31. Drummond A, Strimmer K. Bioinformatics. 2001;17:662–663.[PubMed]
  • 32. Tamura K, Nei M. Mol Biol Evol. 1993;10:512–526.[PubMed]
  • 33. Shimodaira H, Hasegawa M. Mol Biol Evol. 1999;16:1114–1116.[PubMed]
  • 34. Templeton A R. Evolution (Lawrence, Kans) 1983;37:221–224.[PubMed]
  • 35. Butler P M In: The Phylogeny and Classification of the Tetrapods, Mammals. Benton M J, editor. Vol. 2. Oxford: Clarendon; 1988. pp. 117–141. [PubMed][Google Scholar]
  • 36. Eisenberg J F The Mammalian Radiations. Chicago: Univ. Chicago Press; 1981. p. xx. +1–610. [PubMed][Google Scholar]
  • 37. Montgelard C, Catzeflis F M, Douzery E. Mol Biol Evol. 1997;14:550–559.[PubMed]
  • 38. Ursing B M, Arnason U. Proc R Soc London Ser B. 1998;265:2251–2255.
  • 39. Shoshani J, McKenna M C. Mol Phylogenet Evol. 1998;9:572–584.[PubMed]
  • 40. Xu X, Janke A, Arnason U. Mol Biol Evol. 1996;13:1167–1173.[PubMed]
  • 41. Arnason U, Gullberg A, Janke A. Proc R Soc London B Biol Sci. 1999;266:339–345.
  • 42. Le Gros Clark W E, Sonntag C F. Proc Zool Soc (London) 1926;30:445–485.[PubMed]
  • 43. Beard K C In: Mammal Phylogeny 2, Placentals. Szalay F S, Novacek M J, McKenna M C, editors. New York: Springer; 1993. pp. 129–150. [PubMed][Google Scholar]
  • 44. Schmitz J, Ohme M, Zischler H. Genetics. 2001;157:777–784.
  • 45. Krettek A, Gullberg A, Arnason U. J Mol Evol. 1995;41:952–957.[PubMed]
  • 46. Sarich V M In: Mammal Phylogeny 2, Placentals. Szalay F S, Novacek M J, McKenna M C, editors. New York: Springer; 1993. pp. 103–113. [PubMed][Google Scholar]
  • 47. Arnason U, Gullberg A. Mol Biol Evol. 1996;13:407–417.[PubMed]
  • 48. Gatesy J, O'Leary M A. Trends Ecol Evol. 2001;16:562–570.[PubMed]
  • 49. Arnason U, Gullberg A, Gretarsdottir S, Ursing B, Janke A. J Mol Evol. 2000;50:569–578.[PubMed]
  • 50. Ursing B M, Slack K, Arnason U. Zool Scr. 2000;29:83–88.[PubMed]
  • 51. Gingerich P D, ul Haq M, Zalmout I S, Kahn I H, Malkani M S. Science. 2001;293:2239–2242.[PubMed]
  • 52. Thewissen J G M, Williams E M, Roe L J, Hussain S T. Nature (London) 2001;413:277–281.[PubMed]
  • 53. Kellogg A R. Carnegie Inst Wash Publ. 1936;482:1–366.[PubMed]
  • 54. Slijper E I. Capita Zool. 1936;7:1–590.[PubMed]
  • 55. Yablokov A V, Belkovich V M, Borisov V I Whales and Dolphins. Nauka Moscow; 1972. pp. 1–472. (Russian). [PubMed][Google Scholar]
  • 56. Fordyce R E, Barnes L G. Annu Rev Earth Planet Sci. 1994;22:419–455.[PubMed]
  • 57. Pumo D E, Finamore P S, Franek W R, Carleton C J, Tarzami S, Balzarano D. J Mol Evol. 1998;47:709–717.[PubMed]
  • 58. Arnason U, Gullberg A, Janke A, Xu X. J Mol Evol. 1996;43:650–661.[PubMed]
  • 59. Arnason U, Gullberg A, Janke A. J Mol Evol. 1998;47:718–727.[PubMed]
  • 60. Hedges S B, Parker P H, Sibley C G, Kumar S. Nature (London) 1996;381:226–229.[PubMed]
  • 61. Kumar S, Hedges S B. Nature (London) 1998;392:917–920.[PubMed]
  • 62. Easteal S. BioEssays. 1999;21:1052–1058.[PubMed]
  • 63. Benton M J. BioEssays. 1999;21:1043–1051.[PubMed]
  • 64. Nessov, L. A. (1985) Vestn. Leningr. Univ. Ser. 7 17, 8–18.
  • 65. Archibald J D. Science. 1996;272:1150–1153.[PubMed]
  • 66. Archibald J D, Averianov A O, Ekdale E G. Nature (London) 2001;414:62–65.[PubMed]
  • 67. Rosenberg M S, Kumar S. Proc Natl Acad Sci USA. 2001;98:10751–10756.
  • 68. McNiff B E, Allard M W. Am J Phys Anthropol. 1998;107:225–241.[PubMed]
  • 69. DeBry R W, Sagel R M. Mol Phylogenet Evol. 2001;19:290–301.[PubMed]
  • 70. Poe S, Swofford D L. Nature (London) 1999;398:299–300.[PubMed]
  • 71. Penny D, Hasegawa M, Waddell P J, Hendy M D. Syst Biol. 1999;48:76–93.[PubMed]
  • 72. Waddell P J, Cao Y, Hauf J, Hasegawa M. Syst Biol. 1999;48:31–53.[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.