A recent preliminary study using complete mitochondrial DNA sequences from 48 species of teleosts has suggested that higher teleostean phylogenies should be reinvestigated on the basis of more intensive taxonomic sampling. As a second step towards the resolution of higher teleostean phylogenies, which have been described as the "(unresolved) bush at the top of the tree," we reanalyzed their relationships using mitogenomic data from 100 purposefully chosen species that fully represented all of the higher teleostean orders, except for the Batrachoidiformes. Unweighted and weighted maximum parsimony analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding 3rd codon positions) and 21 transfer RNA (tRNA) genes (stem regions only) from each species. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. All major, comprehensive groups above ordinal level as currently defined in higher teleosts (with the exception of the Neoteleostei and several monotypic groups), such as the Eurypterygii, Ctenosquamata, Acanthomorpha, Paracanthopterygii, Acanthopterygii, and Percomorpha, appeared to be nonmonophyletic in the present tree. Such incongruities largely resulted from differences in the placement and/or limits of the orders Ateleopodiformes, Lampridiformes, Polymixiiformes, Ophidiiformes, Lophiiformes, Beryciformes, Stephanoberyciformes, and Zeiformes, long-standing problematic taxa in systematic ichthyology. Of these, the resulting phylogenetic positions of the Ophidiiformes and Lophiiformes were totally unexpected, because, although they have consistently been considered relatively primitive groups within higher teleosts (Paracanthopterygii), they were confidently placed within a crown group of teleosts, herein called the Percomorpha. It should be noted that many unexpected, but highly supported relationships were found within the Percomorpha, being highly promising for the next investigative step towards resolution of this remarkably diversified group of teleosts.