Lung cancer. 9: Molecular biology of lung cancer: clinical implications.
Journal: 2003/October - Thorax
ISSN: 0040-6376
PUBMED: 14514947
Abstract:
It has been hypothesised that clinically evident lung cancers have accumulated many different genetic or epigenetic abnormalities in oncogenes and/or tumour suppressor genes. This notion has important clinical ramifications. Recent developments in our knowledge of the molecular biology of lung cancer are reviewed, with particular reference to genetic abnormalities in tumour suppressor gene inactivation and overactivity of growth promoting oncogenes. These changes lead to the "hallmarks of lung cancer". These hallmarks are the new rational targets for early detection, prevention, and treatment of lung cancer.
Relations:
Content
Citations
(26)
References
(152)
Grants
(340)
Diseases
(1)
Conditions
(3)
Chemicals
(2)
Organisms
(1)
Processes
(4)
Similar articles
Articles by the same authors
Discussion board
Thorax 58(10): 892-900

Lung cancer • 9: Molecular biology of lung cancer: clinical implications

Full Text

The Full Text of this article is available as a PDF (214K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Jemal Ahmedin, Thomas Andrea, Murray Taylor, Thun Michael. Cancer statistics, 2002. CA Cancer J Clin. 2002 Jan-Feb;52(1):23–47. [PubMed] [Google Scholar]
  • Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999 Jan-Feb;49(1):33–1. [PubMed] [Google Scholar]
  • Zöchbauer-Müller S, Minna JD. The biology of lung cancer including potential clinical applications. Chest Surg Clin N Am. 2000 Nov;10(4):691–708. [PubMed] [Google Scholar]
  • Zochbauer-Muller Sabine, Gazdar Adi F, Minna John D. Molecular pathogenesis of lung cancer. Annu Rev Physiol. 2002;64:681–708. [PubMed] [Google Scholar]
  • Sekido Y, Fong KM, Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta. 1998 Aug 19;1378(1):F21–F59. [PubMed] [Google Scholar]
  • Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13784–13789.[PMC free article] [PubMed] [Google Scholar]
  • Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790–13795.[PMC free article] [PubMed] [Google Scholar]
  • Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999 Jul 21;91(14):1194–1210. [PubMed] [Google Scholar]
  • Fiore MC, Jorenby DE, Baker TB. Smoking cessation: principles and practice based upon the AHCPR Guideline, 1996. Agency for Health Care Policy and Research. Ann Behav Med. 1997 Summer;19(3):213–219. [PubMed] [Google Scholar]
  • Wistuba II, Lam S, Behrens C, Virmani AK, Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD, Gazdar AF. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst. 1997 Sep 17;89(18):1366–1373.[PMC free article] [PubMed] [Google Scholar]
  • Wistuba II, Behrens C, Milchgrub S, Bryant D, Hung J, Minna JD, Gazdar AF. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene. 1999 Jan 21;18(3):643–650. [PubMed] [Google Scholar]
  • Park IW, Wistuba II, Maitra A, Milchgrub S, Virmani AK, Minna JD, Gazdar AF. Multiple clonal abnormalities in the bronchial epithelium of patients with lung cancer. J Natl Cancer Inst. 1999 Nov 3;91(21):1863–1868. [PubMed] [Google Scholar]
  • Mao L, Lee JS, Kurie JM, Fan YH, Lippman SM, Lee JJ, Ro JY, Broxson A, Yu R, Morice RC, et al. Clonal genetic alterations in the lungs of current and former smokers. J Natl Cancer Inst. 1997 Jun 18;89(12):857–862. [PubMed] [Google Scholar]
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57–70. [PubMed] [Google Scholar]
  • Pfeiffer P, Clausen PP, Andersen K, Rose C. Lack of prognostic significance of epidermal growth factor receptor and the oncoprotein p185HER-2 in patients with systemically untreated non-small-cell lung cancer: an immunohistochemical study on cryosections. Br J Cancer. 1996 Jul;74(1):86–91.[PMC free article] [PubMed] [Google Scholar]
  • Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, McIntosh J, Kurie J, Dmitrovsky E. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 1993 May 15;53(10 Suppl):2379–2385. [PubMed] [Google Scholar]
  • Rachwal WJ, Bongiorno PF, Orringer MB, Whyte RI, Ethier SP, Beer DG. Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas. Br J Cancer. 1995 Jul;72(1):56–64.[PMC free article] [PubMed] [Google Scholar]
  • Hsieh ET, Shepherd FA, Tsao MS. Co-expression of epidermal growth factor receptor and transforming growth factor-alpha is independent of ras mutations in lung adenocarcinoma. Lung Cancer. 2000 Aug;29(2):151–157. [PubMed] [Google Scholar]
  • O'Byrne KJ, Cox G, Swinson D, Richardson D, Edwards JG, Lolljee J, Andi A, Koukourakis MI, Giatromanolaki A, Gatter K, et al. Towards a biological staging model for operable non-small cell lung cancer. Lung Cancer. 2001 Dec;34 (Suppl 2):S83–S89. [PubMed] [Google Scholar]
  • Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y, Ishida S, Nagase A, Miyokawa N, Hirata S, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000 May-Jun;7(3):603–607. [PubMed] [Google Scholar]
  • D'Amico TA, Aloia TA, Moore MB, Herndon JE, 2nd, Brooks KR, Lau CL, Harpole DH., Jr Molecular biologic substaging of stage I lung cancer according to gender and histology. Ann Thorac Surg. 2000 Mar;69(3):882–886. [PubMed] [Google Scholar]
  • Cox G, Jones JL, Andi A, Waller DA, O'Byrne KJ. A biological staging model for operable non-small cell lung cancer. Thorax. 2001 Jul;56(7):561–566.[PMC free article] [PubMed] [Google Scholar]
  • Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D, Hölscher AH, Danenberg PV. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res. 2001 Jul;7(7):1850–1855. [PubMed] [Google Scholar]
  • Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, D'Andrea G, Seidman A, Norton L, Gunnett K, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol. 2000 Feb;18(4):904–914. [PubMed] [Google Scholar]
  • Weiner DB, Nordberg J, Robinson R, Nowell PC, Gazdar A, Greene MI, Williams WV, Cohen JA, Kern JA. Expression of the neu gene-encoded protein (P185neu) in human non-small cell carcinomas of the lung. Cancer Res. 1990 Jan 15;50(2):421–425. [PubMed] [Google Scholar]
  • Tsai CM, Chang KT, Perng RP, Mitsudomi T, Chen MH, Kadoyama C, Gazdar AF. Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst. 1993 Jun 2;85(11):897–901. [PubMed] [Google Scholar]
  • Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC. c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res. 1994 Jun 15;54(12):3260–3266. [PubMed] [Google Scholar]
  • Kern JA, Slebos RJ, Top B, Rodenhuis S, Lager D, Robinson RA, Weiner D, Schwartz DA. C-erbB-2 expression and codon 12 K-ras mutations both predict shortened survival for patients with pulmonary adenocarcinomas. J Clin Invest. 1994 Feb;93(2):516–520.[PMC free article] [PubMed] [Google Scholar]
  • Agus DB, Bunn PA, Jr, Franklin W, Garcia M, Ozols RF. HER-2/neu as a therapeutic target in non-small cell lung cancer, prostate cancer, and ovarian cancer. Semin Oncol. 2000 Dec;27(6 Suppl 11):53–100. [PubMed] [Google Scholar]
  • Wang WL, Healy ME, Sattler M, Verma S, Lin J, Maulik G, Stiles CD, Griffin JD, Johnson BE, Salgia R. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene. 2000 Jul 20;19(31):3521–3528. [PubMed] [Google Scholar]
  • Krystal GW, Hines SJ, Organ CP. Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res. 1996 Jan 15;56(2):370–376. [PubMed] [Google Scholar]
  • Krystal GW, Honsawek S, Litz J, Buchdunger E. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res. 2000 Aug;6(8):3319–3326. [PubMed] [Google Scholar]
  • Richardson GE, Johnson BE. The biology of lung cancer. Semin Oncol. 1993 Apr;20(2):105–127. [PubMed] [Google Scholar]
  • Kelley MJ, Linnoila RI, Avis IL, Georgiadis MS, Cuttitta F, Mulshine JL, Johnson BE. Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest. 1997 Jul;112(1):256–261. [PubMed] [Google Scholar]
  • Chaudhry A, Carrasquillo JA, Avis IL, Shuke N, Reynolds JC, Bartholomew R, Larson SM, Cuttitta F, Johnson BE, Mulshine JL. Phase I and imaging trial of a monoclonal antibody directed against gastrin-releasing peptide in patients with lung cancer. Clin Cancer Res. 1999 Nov;5(11):3385–3393. [PubMed] [Google Scholar]
  • Fathi Z, Way JW, Corjay MH, Viallet J, Sausville EA, Battey JF. Bombesin receptor structure and expression in human lung carcinoma cell lines. J Cell Biochem Suppl. 1996;24:237–246. [PubMed] [Google Scholar]
  • Siegfried JM, DeMichele MA, Hunt JD, Davis AG, Vohra KP, Pilewski JM. Expression of mRNA for gastrin-releasing peptide receptor by human bronchial epithelial cells. Association with prolonged tobacco exposure and responsiveness to bombesin-like peptides. Am J Respir Crit Care Med. 1997 Aug;156(2 Pt 1):358–366. [PubMed] [Google Scholar]
  • Shriver SP, Bourdeau HA, Gubish CT, Tirpak DL, Davis AL, Luketich JD, Siegfried JM. Sex-specific expression of gastrin-releasing peptide receptor: relationship to smoking history and risk of lung cancer. J Natl Cancer Inst. 2000 Jan 5;92(1):24–33. [PubMed] [Google Scholar]
  • Grimberg A, Cohen P. Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol. 2000 Apr;183(1):1–9.[PMC free article] [PubMed] [Google Scholar]
  • Sueoka N, Lee HY, Wiehle S, Cristiano RJ, Fang B, Ji L, Roth JA, Hong WK, Cohen P, Kurie JM. Insulin-like growth factor binding protein-6 activates programmed cell death in non-small cell lung cancer cells. Oncogene. 2000 Sep 7;19(38):4432–4436. [PubMed] [Google Scholar]
  • Hochscheid R, Jaques G, Wegmann B. Transfection of human insulin-like growth factor-binding protein 3 gene inhibits cell growth and tumorigenicity: a cell culture model for lung cancer. J Endocrinol. 2000 Sep;166(3):553–563. [PubMed] [Google Scholar]
  • Wu X, Yu H, Amos CI, Hong WK, Spitz MR. Joint effect of insulin-like growth factors and mutagen sensitivity in lung cancer risk. J Natl Cancer Inst. 2000 May 3;92(9):737–743. [PubMed] [Google Scholar]
  • Slebos RJ, Hruban RH, Dalesio O, Mooi WJ, Offerhaus GJ, Rodenhuis S. Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J Natl Cancer Inst. 1991 Jul 17;83(14):1024–1027. [PubMed] [Google Scholar]
  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  • Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature. 2001 Apr 26;410(6832):1111–1116. [PubMed] [Google Scholar]
  • Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ, Wagenaar SS, Vanderschueren RG, van Zandwijk N, Mooi WJ, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990 Aug 30;323(9):561–565. [PubMed] [Google Scholar]
  • Mitsudomi T, Steinberg SM, Oie HK, Mulshine JL, Phelps R, Viallet J, Pass H, Minna JD, Gazdar AF. ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res. 1991 Sep 15;51(18):4999–5002. [PubMed] [Google Scholar]
  • Rosell R, Li S, Skacel Z, Mate JL, Maestre J, Canela M, Tolosa E, Armengol P, Barnadas A, Ariza A. Prognostic impact of mutated K-ras gene in surgically resected non-small cell lung cancer patients. Oncogene. 1993 Sep;8(9):2407–2412. [PubMed] [Google Scholar]
  • Siegfried JM, Gillespie AT, Mera R, Casey TJ, Keohavong P, Testa JR, Hunt JD. Prognostic value of specific KRAS mutations in lung adenocarcinomas. Cancer Epidemiol Biomarkers Prev. 1997 Oct;6(10):841–847. [PubMed] [Google Scholar]
  • Graziano SL, Gamble GP, Newman NB, Abbott LZ, Rooney M, Mookherjee S, Lamb ML, Kohman LJ, Poiesz BJ. Prognostic significance of K-ras codon 12 mutations in patients with resected stage I and II non-small-cell lung cancer. J Clin Oncol. 1999 Feb;17(2):668–675. [PubMed] [Google Scholar]
  • Rodenhuis S, Boerrigter L, Top B, Slebos RJ, Mooi WJ, van't Veer L, van Zandwijk N. Mutational activation of the K-ras oncogene and the effect of chemotherapy in advanced adenocarcinoma of the lung: a prospective study. J Clin Oncol. 1997 Jan;15(1):285–291. [PubMed] [Google Scholar]
  • Schiller JH, Adak S, Feins RH, Keller SM, Fry WA, Livingston RB, Hammond ME, Wolf B, Sabatini L, Jett J, et al. Lack of prognostic significance of p53 and K-ras mutations in primary resected non-small-cell lung cancer on E4592: a Laboratory Ancillary Study on an Eastern Cooperative Oncology Group Prospective Randomized Trial of Postoperative Adjuvant Therapy. J Clin Oncol. 2001 Jan 15;19(2):448–457. [PubMed] [Google Scholar]
  • Kwiatkowski DJ, Harpole DH, Jr, Godleski J, Herndon JE, 2nd, Shieh DB, Richards W, Blanco R, Xu HJ, Strauss GM, Sugarbaker DJ. Molecular pathologic substaging in 244 stage I non-small-cell lung cancer patients: clinical implications. J Clin Oncol. 1998 Jul;16(7):2468–2477. [PubMed] [Google Scholar]
  • Karp JE, Kaufmann SH, Adjei AA, Lancet JE, Wright JJ, End DW. Current status of clinical trials of farnesyltransferase inhibitors. Curr Opin Oncol. 2001 Nov;13(6):470–476. [PubMed] [Google Scholar]
  • Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 2001 Jul 18;93(14):1062–1074. [PubMed] [Google Scholar]
  • Bernasconi NL, Wormhoudt TA, Laird-Offringa IA. Post-transcriptional deregulation of myc genes in lung cancer cell lines. Am J Respir Cell Mol Biol. 2000 Oct;23(4):560–565. [PubMed] [Google Scholar]
  • Volm M, Koomagi R. Prognostic relevance of c-Myc and caspase-3 for patients with non-small cell lung cancer. Oncol Rep. 2000 Jan-Feb;7(1):95–98. [PubMed] [Google Scholar]
  • Kubokura H, Tenjin T, Akiyama H, Koizumi K, Nishimura H, Yamamoto M, Tanaka S. Relations of the c-myc gene and chromosome 8 in non-small cell lung cancer: analysis by fluorescence in situ hybridization. Ann Thorac Cardiovasc Surg. 2001 Aug;7(4):197–203. [PubMed] [Google Scholar]
  • Ou X, Campau S, Slusher R, Jasti RK, Mabry M, Kalemkerian GP. Mechanism of all-trans-retinoic acid-mediated L-myc gene regulation in small cell lung cancer. Oncogene. 1996 Nov 7;13(9):1893–1899. [PubMed] [Google Scholar]
  • Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001 Apr;28(2 Suppl 4):3–13. [PubMed] [Google Scholar]
  • Apolinario RM, van der Valk P, de Jong JS, Deville W, van Ark-Otte J, Dingemans AM, van Mourik JC, Postmus PE, Pinedo HM, Giaccone G. Prognostic value of the expression of p53, bcl-2, and bax oncoproteins, and neovascularization in patients with radically resected non-small-cell lung cancer. J Clin Oncol. 1997 Jun;15(6):2456–2466. [PubMed] [Google Scholar]
  • Brambilla E, Negoescu A, Gazzeri S, Lantuejoul S, Moro D, Brambilla C, Coll JL. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol. 1996 Dec;149(6):1941–1952.[PMC free article] [PubMed] [Google Scholar]
  • Bandala E, Espinosa M, Maldonado V, Meléndez-Zajgla J. Inhibitor of apoptosis-1 (IAP-1) expression and apoptosis in non-small-cell lung cancer cells exposed to gemcitabine. Biochem Pharmacol. 2001 Jul 1;62(1):13–19. [PubMed] [Google Scholar]
  • Girard L, Zöchbauer-Müller S, Virmani AK, Gazdar AF, Minna JD. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 2000 Sep 1;60(17):4894–4906. [PubMed] [Google Scholar]
  • Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JW, 3rd, Garner HR, McKay B, Latif F, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000 Apr 1;60(7):1949–1960. [PubMed] [Google Scholar]
  • Sozzi G, Veronese ML, Negrini M, Baffa R, Cotticelli MG, Inoue H, Tornielli S, Pilotti S, De Gregorio L, Pastorino U, et al. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell. 1996 Apr 5;85(1):17–26. [PubMed] [Google Scholar]
  • Fong KM, Biesterveld EJ, Virmani A, Wistuba I, Sekido Y, Bader SA, Ahmadian M, Ong ST, Rassool FV, Zimmerman PV, et al. FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res. 1997 Jun 1;57(11):2256–2267. [PubMed] [Google Scholar]
  • Siprashvili Z, Sozzi G, Barnes LD, McCue P, Robinson AK, Eryomin V, Sard L, Tagliabue E, Greco A, Fusetti L, et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13771–13776.[PMC free article] [PubMed] [Google Scholar]
  • Ji L, Fang B, Yen N, Fong K, Minna JD, Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res. 1999 Jul 15;59(14):3333–3339. [PubMed] [Google Scholar]
  • Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 2000 Nov 1;60(21):6116–6133. [PubMed] [Google Scholar]
  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000 Jul;25(3):315–319. [PubMed] [Google Scholar]
  • Dammann R, Takahashi T, Pfeifer GP. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene. 2001 Jun 14;20(27):3563–3567. [PubMed] [Google Scholar]
  • Burbee DG, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001 May 2;93(9):691–699.[PMC free article] [PubMed] [Google Scholar]
  • Sekido Y, Bader S, Latif F, Chen JY, Duh FM, Wei MH, Albanesi JP, Lee CC, Lerman MI, Minna JD. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4120–4125.[PMC free article] [PubMed] [Google Scholar]
  • Kondo M, Ji L, Kamibayashi C, Tomizawa Y, Randle D, Sekido Y, Yokota J, Kashuba V, Zabarovsky E, Kuzmin I, et al. Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene. 2001 Sep 27;20(43):6258–6262. [PubMed] [Google Scholar]
  • Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, Drabkin H, Lerman MI, Gazdar AF, Minna JD. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13954–13959.[PMC free article] [PubMed] [Google Scholar]
  • Xian J, Clark KJ, Fordham R, Pannell R, Rabbitts TH, Rabbitts PH. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Dutt1/Robo1 gene. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15062–15066.[PMC free article] [PubMed] [Google Scholar]
  • Virmani AK, Rathi A, Zöchbauer-Müller S, Sacchi N, Fukuyama Y, Bryant D, Maitra A, Heda S, Fong KM, Thunnissen F, et al. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst. 2000 Aug 16;92(16):1303–1307. [PubMed] [Google Scholar]
  • Geradts J, Fong KM, Zimmerman PV, Maynard R, Minna JD. Correlation of abnormal RB, p16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res. 1999 Apr;5(4):791–800. [PubMed] [Google Scholar]
  • Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989 Oct 27;246(4929):491–494. [PubMed] [Google Scholar]
  • Bennett WP, Hussain SP, Vahakangas KH, Khan MA, Shields PG, Harris CC. Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol. 1999 Jan;187(1):8–18. [PubMed] [Google Scholar]
  • Mitsudomi T, Hamajima N, Ogawa M, Takahashi T. Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis. Clin Cancer Res. 2000 Oct;6(10):4055–4063. [PubMed] [Google Scholar]
  • Kandioler-Eckersberger D, Kappel S, Mittlböck M, Dekan G, Ludwig C, Janschek E, Pirker R, Wolner E, Eckersberger F. The TP53 genotype but not immunohistochemical result is predictive of response to cisplatin-based neoadjuvant therapy in stage III non-small cell lung cancer. J Thorac Cardiovasc Surg. 1999 Apr;117(4):744–750. [PubMed] [Google Scholar]
  • Matsuzoe D, Hideshima T, Kimura A, Inada K, Watanabe K, Akita Y, Kawahara K, Shirakusa T. p53 mutations predict non-small cell lung carcinoma response to radiotherapy. Cancer Lett. 1999 Jan 29;135(2):189–194. [PubMed] [Google Scholar]
  • Laudanski J, Niklinska W, Burzykowski T, Chyczewski L, Niklinski J. Prognostic significance of p53 and bcl-2 abnormalities in operable nonsmall cell lung cancer. Eur Respir J. 2001 Apr;17(4):660–666. [PubMed] [Google Scholar]
  • Roth JA, Grammer SF, Swisher SG, Komaki R, Nemunaitis J, Merritt J, Fujiwara T, Meyn RE., Jr Gene therapy approaches for the management of non-small cell lung cancer. Semin Oncol. 2001 Aug;28(4 Suppl 14):50–56. [PubMed] [Google Scholar]
  • Schuler M, Herrmann R, De Greve JL, Stewart AK, Gatzemeier U, Stewart DJ, Laufman L, Gralla R, Kuball J, Buhl R, et al. Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol. 2001 Mar 15;19(6):1750–1758. [PubMed] [Google Scholar]
  • Higashiyama M, Doi O, Kodama K, Yokouchi H, Kasugai T, Ishiguro S, Takami K, Nakayama T, Nishisho I. MDM2 gene amplification and expression in non-small-cell lung cancer: immunohistochemical expression of its protein is a favourable prognostic marker in patients without p53 protein accumulation. Br J Cancer. 1997;75(9):1302–1308.[PMC free article] [PubMed] [Google Scholar]
  • Reissmann PT, Koga H, Takahashi R, Figlin RA, Holmes EC, Piantadosi S, Cordon-Cardo C, Slamon DJ. Inactivation of the retinoblastoma susceptibility gene in non-small-cell lung cancer. The Lung Cancer Study Group. Oncogene. 1993 Jul;8(7):1913–1919. [PubMed] [Google Scholar]
  • Cagle PT, el-Naggar AK, Xu HJ, Hu SX, Benedict WF. Differential retinoblastoma protein expression in neuroendocrine tumors of the lung. Potential diagnostic implications. Am J Pathol. 1997 Feb;150(2):393–400.[PMC free article] [PubMed] [Google Scholar]
  • Dosaka-Akita H, Hu SX, Fujino M, Harada M, Kinoshita I, Xu HJ, Kuzumaki N, Kawakami Y, Benedict WF. Altered retinoblastoma protein expression in nonsmall cell lung cancer: its synergistic effects with altered ras and p53 protein status on prognosis. Cancer. 1997 Apr 1;79(7):1329–1337. [PubMed] [Google Scholar]
  • Ookawa K, Shiseki M, Takahashi R, Yoshida Y, Terada M, Yokota J. Reconstitution of the RB gene suppresses the growth of small-cell lung carcinoma cells carrying multiple genetic alterations. Oncogene. 1993 Aug;8(8):2175–2181. [PubMed] [Google Scholar]
  • Betticher DC, Heighway J, Hasleton PS, Altermatt HJ, Ryder WD, Cerny T, Thatcher N. Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br J Cancer. 1996 Feb;73(3):294–300.[PMC free article] [PubMed] [Google Scholar]
  • Caputi M, De Luca L, Papaccio G, D'Aponte A, Cavallotti I, Scala P, Scarano F, Manna M, Gualdiero L, De Luca B. Prognostic role of cyclin D1 in non small cell lung cancer: an immunohistochemical analysis. Eur J Histochem. 1997;41(2):133–138. [PubMed] [Google Scholar]
  • Lingfei K, Pingzhang Y, Zhengguo L, Jianhua G, Yaowu Z. A study on p16, pRb, cdk4 and cyclinD1 expression in non-small cell lung cancers. Cancer Lett. 1998 Aug 14;130(1-2):93–101. [PubMed] [Google Scholar]
  • Shapiro GI, Supko JG, Patterson A, Lynch C, Lucca J, Zacarola PF, Muzikansky A, Wright JJ, Lynch TJ, Jr, Rollins BJ. A phase II trial of the cyclin-dependent kinase inhibitor flavopiridol in patients with previously untreated stage IV non-small cell lung cancer. Clin Cancer Res. 2001 Jun;7(6):1590–1599. [PubMed] [Google Scholar]
  • Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT, Farinas AJ, Milchgrub S, Euhus DM, Gilcrease M, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res. 2001 Jul;7(7):1998–2004. [PubMed] [Google Scholar]
  • Zöchbauer-Müller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 2001 Jan 1;61(1):249–255. [PubMed] [Google Scholar]
  • Zöchbauer-Müller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, Virmani AK, Milchgrub S, Gazdar AF, Minna JD. 5' CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res. 2001 May 1;61(9):3581–3585. [PubMed] [Google Scholar]
  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. [PubMed] [Google Scholar]
  • Otterson GA, Khleif SN, Chen W, Coxon AB, Kaye FJ. CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2'deoxycytidine. Oncogene. 1995 Sep 21;11(6):1211–1216. [PubMed] [Google Scholar]
  • Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11891–11896.[PMC free article] [PubMed] [Google Scholar]
  • Kim DH, Nelson HH, Wiencke JK, Christiani DC, Wain JC, Mark EJ, Kelsey KT. Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer. Oncogene. 2001 Mar 29;20(14):1765–1770. [PubMed] [Google Scholar]
  • Makos M, Nelkin BD, Lerman MI, Latif F, Zbar B, Baylin SB. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1929–1933.[PMC free article] [PubMed] [Google Scholar]
  • Soria Jean-Charles, Rodriguez Marivonne, Liu Diane D, Lee J Jack, Hong Waun Ki, Mao Li. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res. 2002 Jan 15;62(2):351–355. [PubMed] [Google Scholar]
  • Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000 Nov 1;60(21):5954–5958. [PubMed] [Google Scholar]
  • Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999 Jan 1;59(1):67–70. [PubMed] [Google Scholar]
  • Zhu WG, Dai Z, Ding H, Srinivasan K, Hall J, Duan W, Villalona-Calero MA, Plass C, Otterson GA. Increased expression of unmethylated CDKN2D by 5-aza-2'-deoxycytidine in human lung cancer cells. Oncogene. 2001 Nov 22;20(53):7787–7796. [PubMed] [Google Scholar]
  • Hiyama K, Hiyama E, Ishioka S, Yamakido M, Inai K, Gazdar AF, Piatyszek MA, Shay JW. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst. 1995 Jun 21;87(12):895–902. [PubMed] [Google Scholar]
  • Albanell J, Lonardo F, Rusch V, Engelhardt M, Langenfeld J, Han W, Klimstra D, Venkatraman E, Moore MA, Dmitrovsky E. High telomerase activity in primary lung cancers: association with increased cell proliferation rates and advanced pathologic stage. J Natl Cancer Inst. 1997 Nov 5;89(21):1609–1615. [PubMed] [Google Scholar]
  • Arinaga M, Shimizu S, Gotoh K, Haruki N, Takahashi T, Takahashi T, Mitsudomi T. Expression of human telomerase subunit genes in primary lung cancer and its clinical significance. Ann Thorac Surg. 2000 Aug;70(2):401–406. [PubMed] [Google Scholar]
  • Yashima K, Litzky LA, Kaiser L, Rogers T, Lam S, Wistuba II, Milchgrub S, Srivastava S, Piatyszek MA, Shay JW, et al. Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. Cancer Res. 1997 Jun 15;57(12):2373–2377. [PubMed] [Google Scholar]
  • Xinarianos G, Scott FM, Liloglou T, Prime W, Turnbull L, Walshaw M, Field JK. Evaluation of telomerase activity in bronchial lavage as a potential diagnostic marker for malignant lung disease. Lung Cancer. 2000 Apr;28(1):37–42. [PubMed] [Google Scholar]
  • Hara H, Yamashita K, Shinada J, Yoshimura H, Kameya T. Clinicopathologic significance of telomerase activity and hTERT mRNA expression in non-small cell lung cancer. Lung Cancer. 2001 Nov;34(2):219–226. [PubMed] [Google Scholar]
  • White LK, Wright WE, Shay JW. Telomerase inhibitors. Trends Biotechnol. 2001 Mar;19(3):114–120. [PubMed] [Google Scholar]
  • Angeletti CA, Lucchi M, Fontanini G, Mussi A, Chella A, Ribechini A, Vignati S, Bevilacqua G. Prognostic significance of tumoral angiogenesis in completely resected late stage lung carcinoma (stage IIIA-N2). Impact of adjuvant therapies in a subset of patients at high risk of recurrence. Cancer. 1996 Aug 1;78(3):409–415. [PubMed] [Google Scholar]
  • Fontanini G, Lucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolo F, Angeletti CA, Bevilacqua G. Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst. 1997 Jun 18;89(12):881–886. [PubMed] [Google Scholar]
  • Pastorino U, Andreola S, Tagliabue E, Pezzella F, Incarbone M, Sozzi G, Buyse M, Menard S, Pierotti M, Rilke F. Immunocytochemical markers in stage I lung cancer: relevance to prognosis. J Clin Oncol. 1997 Aug;15(8):2858–2865. [PubMed] [Google Scholar]
  • Offersen BV, Pfeiffer P, Hamilton-Dutoit S, Overgaard J. Patterns of angiogenesis in nonsmall-cell lung carcinoma. Cancer. 2001 Apr 15;91(8):1500–1509. [PubMed] [Google Scholar]
  • Yuan A, Yu CJ, Kuo SH, Chen WJ, Lin FY, Luh KT, Yang PC, Lee YC. Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J Clin Oncol. 2001 Jan 15;19(2):432–441. [PubMed] [Google Scholar]
  • O'Byrne KJ, Koukourakis MI, Giatromanolaki A, Cox G, Turley H, Steward WP, Gatter K, Harris AL. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br J Cancer. 2000 Apr;82(8):1427–1432.[PMC free article] [PubMed] [Google Scholar]
  • Mattern J, Koomägi R, Volm M. Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br J Cancer. 1996 Apr;73(7):931–934.[PMC free article] [PubMed] [Google Scholar]
  • Fontanini G, Vignati S, Lucchi M, Mussi A, Calcinai A, Boldrini L, Chiné S, Silvestri V, Angeletti CA, Basolo F, et al. Neoangiogenesis and p53 protein in lung cancer: their prognostic role and their relation with vascular endothelial growth factor (VEGF) expression. Br J Cancer. 1997;75(9):1295–1301.[PMC free article] [PubMed] [Google Scholar]
  • Niklińska W, Burzykowski T, Chyczewski L, Nikliński J. Expression of vascular endothelial growth factor (VEGF) in non-small cell lung cancer (NSCLC): association with p53 gene mutation and prognosis. Lung Cancer. 2001 Dec;34 (Suppl 2):S59–S64. [PubMed] [Google Scholar]
  • Tamura M, Ohta Y, Kajita T, Kimura K, Go T, Oda M, Nakamura H, Watanabe G. Plasma VEGF concentration can predict the tumor angiogenic capacity in non-small cell lung cancer. Oncol Rep. 2001 Sep-Oct;8(5):1097–1102. [PubMed] [Google Scholar]
  • D'Amico TA, Aloia TA, Moore MB, Conlon DH, Herndon JE, 2nd, Kinch MS, Harpole DH., Jr Predicting the sites of metastases from lung cancer using molecular biologic markers. Ann Thorac Surg. 2001 Oct;72(4):1144–1148. [PubMed] [Google Scholar]
  • Shih JY, Yang SC, Hong TM, Yuan A, Chen JJ, Yu CJ, Chang YL, Lee YC, Peck K, Wu CW, et al. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst. 2001 Sep 19;93(18):1392–1400. [PubMed] [Google Scholar]
  • Akashi T, Ito E, Eishi Y, Koike M, Nakamura K, Burgeson RE. Reduced expression of laminin alpha 3 and alpha 5 chains in non-small cell lung cancers. Jpn J Cancer Res. 2001 Mar;92(3):293–301.[PMC free article] [PubMed] [Google Scholar]
  • Manda R, Kohno T, Niki T, Yamada T, Takenoshita S, Kuwano H, Yokota J. Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem Biophys Res Commun. 2000 Aug 28;275(2):440–445. [PubMed] [Google Scholar]
  • Moriya Y, Niki T, Yamada T, Matsuno Y, Kondo H, Hirohashi S. Increased expression of laminin-5 and its prognostic significance in lung adenocarcinomas of small size. An immunohistochemical analysis of 102 cases. Cancer. 2001 Mar 15;91(6):1129–1141. [PubMed] [Google Scholar]
  • Carmelli D, Swan GE, Robinette D, Fabsitz R. Genetic influence on smoking--a study of male twins. N Engl J Med. 1992 Sep 17;327(12):829–833. [PubMed] [Google Scholar]
  • Heath AC, Madden PA, Slutske WS, Martin NG. Personality and the inheritance of smoking behavior: a genetic perspective. Behav Genet. 1995 Mar;25(2):103–117. [PubMed] [Google Scholar]
  • Arinami T, Ishiguro H, Onaivi ES. Polymorphisms in genes involved in neurotransmission in relation to smoking. Eur J Pharmacol. 2000 Dec 27;410(2-3):215–226. [PubMed] [Google Scholar]
  • Amos CI, Xu W, Spitz MR. Is there a genetic basis for lung cancer susceptibility? Recent Results Cancer Res. 1999;151:3–12. [PubMed] [Google Scholar]
  • Sanders BM, Jay M, Draper GJ, Roberts EM. Non-ocular cancer in relatives of retinoblastoma patients. Br J Cancer. 1989 Sep;60(3):358–365.[PMC free article] [PubMed] [Google Scholar]
  • Reszka E, Wasowicz W. Significance of genetic polymorphisms in glutathione S-transferase multigene family and lung cancer risk. Int J Occup Med Environ Health. 2001;14(2):99–113. [PubMed] [Google Scholar]
  • Wolf CR, Smith CA, Forman D. Metabolic polymorphisms in carcinogen metabolising enzymes and cancer susceptibility. Br Med Bull. 1994 Jul;50(3):718–731. [PubMed] [Google Scholar]
  • Zang EA, Wynder EL. Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst. 1996 Feb 21;88(3-4):183–192. [PubMed] [Google Scholar]
  • Cheng YW, Chiou HL, Sheu GT, Hsieh LL, Chen JT, Chen CY, Su JM, Lee H. The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res. 2001 Apr 1;61(7):2799–2803. [PubMed] [Google Scholar]
  • Vineis P, Schulte P, McMichael AJ. Misconceptions about the use of genetic tests in populations. Lancet. 2001 Mar 3;357(9257):709–712. [PubMed] [Google Scholar]
  • Hussain SP, Amstad P, Raja K, Sawyer M, Hofseth L, Shields PG, Hewer A, Phillips DH, Ryberg D, Haugen A, et al. Mutability of p53 hotspot codons to benzo(a)pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung. Cancer Res. 2001 Sep 1;61(17):6350–6355. [PubMed] [Google Scholar]
  • Hung J, Kishimoto Y, Sugio K, Virmani A, McIntire DD, Minna JD, Gazdar AF. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JAMA. 1995 Feb 15;273(7):558–563. [PubMed] [Google Scholar]
  • Kishimoto Y, Sugio K, Hung JY, Virmani AK, McIntire DD, Minna JD, Gazdar AF. Allele-specific loss in chromosome 9p loci in preneoplastic lesions accompanying non-small-cell lung cancers. J Natl Cancer Inst. 1995 Aug 16;87(16):1224–1229. [PubMed] [Google Scholar]
  • Sugio K, Kishimoto Y, Virmani AK, Hung JY, Gazdar AF. K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas. Cancer Res. 1994 Nov 15;54(22):5811–5815. [PubMed] [Google Scholar]
  • Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JW, 3rd, Garner HR, McKay B, Latif F, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000 Apr 1;60(7):1949–1960. [PubMed] [Google Scholar]
  • Wistuba II, Berry J, Behrens C, Maitra A, Shivapurkar N, Milchgrub S, Mackay B, Minna JD, Gazdar AF. Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res. 2000 Jul;6(7):2604–2610.[PMC free article] [PubMed] [Google Scholar]
  • Mao L, Lee JS, Kurie JM, Fan YH, Lippman SM, Lee JJ, Ro JY, Broxson A, Yu R, Morice RC, et al. Clonal genetic alterations in the lungs of current and former smokers. J Natl Cancer Inst. 1997 Jun 18;89(12):857–862. [PubMed] [Google Scholar]
  • Smith AL, Hung J, Walker L, Rogers TE, Vuitch F, Lee E, Gazdar AF. Extensive areas of aneuploidy are present in the respiratory epithelium of lung cancer patients. Br J Cancer. 1996 Jan;73(2):203–209.[PMC free article] [PubMed] [Google Scholar]
  • Siafakas NM, Tzortzaki EG, Sourvinos G, Bouros D, Tzanakis N, Kafatos A, Spandidos D. Microsatellite DNA instability in COPD. Chest. 1999 Jul;116(1):47–51. [PubMed] [Google Scholar]
  • Field JK, Liloglou T, Xinarianos G, Prime W, Fielding P, Walshaw MJ, Turnbull L. Genetic alterations in bronchial lavage as a potential marker for individuals with a high risk of developing lung cancer. Cancer Res. 1999 Jun 1;59(11):2690–2695. [PubMed] [Google Scholar]
  • Dy GK, Haluska P, Adjei AA. Novel pharmacological agents in clinical development for solid tumours. Expert Opin Investig Drugs. 2001 Dec;10(12):2059–2088. [PubMed] [Google Scholar]
  • Rosell R, Felip E. Predicting response to paclitaxel/carboplatin-based therapy in non-small cell lung cancer. Semin Oncol. 2001 Aug;28(4 Suppl 14):37–44. [PubMed] [Google Scholar]
  • Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, Libby DM, Pasmantier MW, Koizumi J, Altorki NK, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet. 1999 Jul 10;354(9173):99–105. [PubMed] [Google Scholar]
  • Williams MD, Sandler AB. The epidemiology of lung cancer. Cancer Treat Res. 2001;105:31–52. [PubMed] [Google Scholar]
The Prince Charles Hospital, Rode Road, Chermside, Brisbane 4032, Australia.
The Prince Charles Hospital, Rode Road, Chermside, Brisbane 4032, Australia.
Full Text
Selected References
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.