K-complexes Detection in EEG signals using fractal and frequency features coupled with an ensemble classification model.
Journal: 2019/November - Neuroscience
ISSN: 1873-7544
Abstract:
K-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from electroencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of three classifiers is presented. EEG signals are first partitioned into segments, using a sliding window technique. Then, each EEG segment is decomposed using a dual- tree complex wavelet transform (DT-CWT) to a set of real and imaginary parts. A total of 10 sub-bands are used based on four levels of decomposition, and the high sub-bands are considered in this research for feature extraction. Fractal and frequency features based on DT-CWT and Higuchi's algorithm are pulled out from each sub-band and then forwarded to an ensemble classifier to detect k-complexes. A twelve-feature set is finally used to detect the sleep EEG characteristics using the ensemble model. The ensemble model is designed using a combination of three classification techniques including a least square support vector machine (LS-SVM), k-means and Naïve Bayes. The proposed method for the detection of the k-complexes achieves an average accuracy rate of 97.3 %. The results from the ensemble classifier were compared with those by individual classifiers. Comparisons were also made with existing k-complexes detection approaches for which the same datasets were used. The results demonstrate that the proposed approach is efficient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5s. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.
Relations:
Processes
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.