Interaction of Huntington disease protein with transcriptional activator Sp1.
Journal: 2002/April - Molecular and Cellular Biology
ISSN: 0270-7306
PUBMED: 11839795
Abstract:
Polyglutamine expansion causes Huntington disease (HD) and at least seven other neurodegenerative diseases. In HD, N-terminal fragments of huntingtin with an expanded glutamine tract are able to aggregate and accumulate in the nucleus. Although intranuclear huntingtin affects the expression of numerous genes, the mechanism of this nuclear effect is unknown. Here we report that huntingtin interacts with Sp1, a transcription factor that binds to GC-rich elements in certain promoters and activates transcription of the corresponding genes. In vitro binding and immunoprecipitation assays show that polyglutamine expansion enhances the interaction of N-terminal huntingtin with Sp1. In HD transgenic mice (R6/2) that express N-terminal-mutant huntingtin, Sp1 binds to the soluble form of mutant huntingtin but not to aggregated huntingtin. Mutant huntingtin inhibits the binding of nuclear Sp1 to the promoter of nerve growth factor receptor and suppresses its transcriptional activity in cultured cells. Overexpression of Sp1 reduces the cellular toxicity and neuritic extension defects caused by intranuclear mutant huntingtin. These findings suggest that the soluble form of mutant huntingtin in the nucleus may cause cellular dysfunction by binding to Sp1 and thus reducing the expression of Sp1-regulated genes.
Relations:
Content
Citations
(90)
References
(43)
Pathways
(1)
Diseases
(1)
Chemicals
(7)
Genes
(2)
Organisms
(4)
Processes
(6)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Mol Cell Biol 22(5): 1277-1287

Interaction of Huntington Disease Protein with Transcriptional Activator Sp1

Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
Corresponding author. Mailing address: Department of Human Genetics, Emory University School of Medicine, Whitehead Building 347, 615 Michael St., Atlanta GA 30322. Phone: (404) 727-3290. Fax: (404) 727-3949. E-mail: ude.yrome.sciteneg@iloaix.
Received 2001 Oct 2; Revised 2001 Nov 8; Accepted 2001 Nov 27.

Abstract

Polyglutamine expansion causes Huntington disease (HD) and at least seven other neurodegenerative diseases. In HD, N-terminal fragments of huntingtin with an expanded glutamine tract are able to aggregate and accumulate in the nucleus. Although intranuclear huntingtin affects the expression of numerous genes, the mechanism of this nuclear effect is unknown. Here we report that huntingtin interacts with Sp1, a transcription factor that binds to GC-rich elements in certain promoters and activates transcription of the corresponding genes. In vitro binding and immunoprecipitation assays show that polyglutamine expansion enhances the interaction of N-terminal huntingtin with Sp1. In HD transgenic mice (R6/2) that express N-terminal-mutant huntingtin, Sp1 binds to the soluble form of mutant huntingtin but not to aggregated huntingtin. Mutant huntingtin inhibits the binding of nuclear Sp1 to the promoter of nerve growth factor receptor and suppresses its transcriptional activity in cultured cells. Overexpression of Sp1 reduces the cellular toxicity and neuritic extension defects caused by intranuclear mutant huntingtin. These findings suggest that the soluble form of mutant huntingtin in the nucleus may cause cellular dysfunction by binding to Sp1 and thus reducing the expression of Sp1-regulated genes.

Abstract

Huntington disease (HD) is an autosomally dominant degenerative disorder resulting from expansion (>37 units) of a polyglutamine repeat in huntingtin, a 350-kDa protein of unknown function (15). The polyglutamine repeat is localized in the N-terminal region of huntingtin and is encoded by exon1 of the HD gene. Full-length huntingtin is predominantly distributed in the cytoplasm, whereas N-terminal fragments of huntingtin with expanded polyglutamine tracts accumulate in the nucleus (7, 8, 10). N-terminal huntingtin fragments containing expanded polyglutamine tracts are also toxic to cells. For example, transgenic mice expressing N-terminal fragments of mutant huntingtin develop rapidly progressing neurological symptoms (7, 37) that are more severe than those of mice expressing full-length mutant huntingtin (13, 34). Smaller N-terminal huntingtin fragments, when transfected into cultured cells, kill more cells than do larger huntingtin fragments (11, 27).

The mechanisms for the cellular pathology associated with N-terminal-mutant huntingtin are unknown. N-terminal fragments of mutant huntingtin also form intranuclear aggregates (7, 8, 10, 37), a pathological hallmark that is found in many other polyglutamine diseases (43). Recent studies suggest that nuclear polyglutamine inclusions recruit transcription factors and that this recruitment affects gene expression (29, 39). Indeed, intranuclear huntingtin alters the expression of a number of genes, both in HD cells (22) and in transgenic animals (3, 26). The nuclear effect of mutant huntingtin may stem from its interactions with a number of transcription factors, such as the nuclear receptor corepressor (N-CoR) (2), cyclic AMP-responsive element-binding protein (CREB)-binding protein (CBP) (18, 29, 38, 39), and TATA-binding proteins (TBP) (14, 30). It has been found that, of these transcription factors, TBP and CBP are recruited by polyglutamine inclusions (14, 29, 30, 39). However, several studies have suggested that nuclear polyglutamine inclusions are not associated with neurodegeneration (19, 36). Thus, the role of recruitment of transcription factors by nuclear inclusions remains to be defined. In addition, how the interaction of huntingtin with transcription factors affects gene expression is unclear. The down-regulation of numerous genes in HD animals (3, 26) also suggests that intranuclear huntingtin binds to other transcription factors that are vitally important for the expression of a large number of genes. Based on these ideas, we sought to uncover transcription factors whose function is essential for the expression of many genes and whose binding to huntingtin is influenced by polyglutamine expansion.

Our previous studies and others have shown that intranuclear huntingtin can inhibit the expression of a number of genes (3, 22, 26). We noticed that the expression of many of these genes is mediated by Sp1, a transcription activator that is essential for the transcription of numerous genes (5, 6, 9). In this study, we show that the soluble form of N-terminal-mutant huntingtin binds more tightly to Sp1 than does aggregated huntingtin. Using the nerve growth factor (NGF) receptor (NGFR) promoter as a probe, we found that mutant huntingtin inhibits the binding of Sp1 to the NGFR promoter and suppresses NGFR transcriptional activity. Overexpression of Sp1 reduces cellular dysfunction and toxicity associated with intranuclear mutant huntingtin. These results suggest that the interaction between Sp1 and mutant huntingtin also contributes to HD pathology.

Acknowledgments

We thank Russ Price at Emory University for providing the pRL-TS vector, Po-Yung Cheng for his advice on gel shift assays, Dimitri Krainc for discussing unpublished data, and Jennifer Macke for critical reading of the manuscript.

This work was supported by grants from the NIH (NS41669 and AG19206) and Huntington's Disease Society of America.

S.-H. Li and A. L. Cheng contributed equally to this work.

Acknowledgments

REFERENCES

REFERENCES

References

  • 1. Bai, G., and J. W. Kusiak. 1997. Nerve growth factor up-regulates the N-methyl-D-aspartate receptor subunit 1 promoter in PC12 cells. J. Biol. Chem.272:5936-5942. [[PubMed]
  • 2. Boutell, J. M., P. Thomas, J. W. Neal, V. J. Weston, J. Duce, P. S. Harper, and A. L. Jones. 1999. Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum. Mol. Genet.8:1647-1655. [[PubMed]
  • 3. Cha, J. H., C. M. Kosinski, J. A. Kerner, S. A. Alsdorf, L. Mangiarini, S. W. Davies, J. B. Penney, G. P. Bates, and A. B. Young. 1998. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc. Natl. Acad. Sci. USA95:6480-6485.
  • 4. Cheng, P. Y., N. Kagawa, Y. Takahashi, and M. R. Waterman. 2000. Three zinc finger nuclear proteins, Sp1, Sp3, and a ZBP-89 homologue, bind to the cyclic adenosine monophosphate-responsive sequence of the bovine adrenodoxin gene and regulate transcription. Biochemistry39:4347-4357. [[PubMed]
  • 5. Cook, T., B. Gebelein, and R. Urrutia. 1999. Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann. N. Y. Acad. Sci.880:94-102. [[PubMed]
  • 6. Courey, A. J., and R. Tjian. 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell55:887-898. [[PubMed]
  • 7. Davies, S. W., M. Turmaine, B. A. Cozens, M. DiFiglia, A. H. Sharp, C. A. Ross, E. Scherzinger, E. E. Wanker, L. Mangiarini, and G. P. Bates. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell90:537-548. [[PubMed]
  • 8. DiFiglia, M., E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates, J. P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science277:1990-1993. [[PubMed]
  • 9. Gerber, H. P., K. Seipel, O. Georgiev, M. Hofferer, M. Hug, S. Rusconi, and W. Schaffner. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science263:808-811. [[PubMed]
  • 10. Gutekunst, C. A., S. H. Li, H. Yi, J. S. Mulroy, S. Kuemmerle, R. Jones, D. Rye, R. J. Ferrante, S. M. Hersch, and X. J. Li. 1999. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci.19:2522-2534.
  • 11. Hackam, A. S., R. Singaraja, C. L. Wellington, M. Metzler, K. McCutcheon, T. Zhang, M. Kalchman, and M. R. Hayden. 1998. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell Biol.141:1097-1105.
  • 12. Hagen, G., S. Muller, M. Beato, and G. Suske. 1994. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J.13:3843-3851.
  • 13. Hodgson, J. G., N. Agopyan, C. A. Gutekunst, B. R. Leavitt, F. LePiane, R. Singaraja, D. J. Smith, N. Bissada, K. McCutcheon, J. Nasir, L. Jamot, X. J. Li, M. E. Stevens, E. Rosemond, J. C. Roder, A. G. Phillips, E. M. Rubin, S. M. Hersch, and M. R. Hayden. 1999. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron23:181-192. [[PubMed]
  • 14. Huang, C. C., P. W. Faber, F. Persichetti, V. Mittal, J. P. Vonsattel, M. E. MacDonald, and J. F. Gusella. 1998. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet.24:217-233. [[PubMed]
  • 15. Huntington Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell72:971-983. [[PubMed]
  • 16. Ibrahim, N. M., A. C. Marinovic, S. R. Price, L. G. Young, and O. Frohlich. 2000. Pitfall of an internal control plasmid: response of Renilla luciferase (pRL-TK) plasmid to dihydrotestosterone and dexamethasone. BioTechniques29:782-784. [[PubMed]
  • 17. Kadonaga, J. T., K. R. Carner, F. R. Masiarz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell51:1079-1090. [[PubMed]
  • 18. Kazantsev, A., E. Preisinger, A. Dranovsky, D. Goldgaber, and D. Housman. 1999. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA96:11404-11409.
  • 19. Klement, I. A., P. J. Skinner, M. D. Kaytor, H. Yi, S. M. Hersch, H. B. Clark, H. Y. Zoghbi, and H. T. Orr. 1998. Ataxin-1 Nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell95:41-53. [[PubMed]
  • 20. Kuemmerle, S., C. A. Gutekunst, A. M. Klein, X. J. Li, S. H. Li, M. F. Beal, S. M. Hersch, and R. J. Ferrante. 1999. Huntington aggregates may not predict neuronal death in Huntington's disease. Ann. Neurol.46:842-849. [[PubMed]
  • 21. Li, H., S. H. Li, H. Johnston, P. F. Shelbourne, and X. J. Li. 2000. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat. Genet.25:385-389. [[PubMed]
  • 22. Li, S. H., A. L. Cheng, H. Li, and X. J. Li. 1999. Cellular defects and altered gene expression in PC12 cells stably expressing mutant huntingtin. J. Neurosci.19:5159-5172.
  • 23. Li, S. H., C. A. Gutekunst, S. M. Hersch, and X. J. Li. 1998. Interaction of huntingtin-associated protein with dynactin P150Glued. J. Neurosci.18:1261-1269.
  • 24. Lin, C. H., S. Tallaksen-Greene, W. M. Chien, J. A. Cearley, W. S. Jackson, A. B. Crouse, S. Ren, X. J. Li, R. L. Albin, and P. J. Detloff. 2001. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum. Mol. Genet.10:137-144. [[PubMed]
  • 25. Lin, X., B. Antalffy, D. Kang, H. T. Orr, and H. Y. Zoghbi. 2000. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat. Neurosci.3:157-163. [[PubMed]
  • 26. Luthi-Carter, R., A. Strand, N. L. Peters, S. M. Solano, Z. R. Hollingsworth, A. S. Menon, A. S. Frey, B. S. Spektor, E. B. Penney, G. Schilling, C. A. Ross, D. R. Borchelt, S. J. Tapscott, A. B. Young, J. H. Cha, and J. M. Olson. 2000. Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum. Mol. Genet.9:1259-1271. [[PubMed]
  • 27. Martindale, D., A. Hackam, A. Wieczorek, L. Ellerby, C. Wellington, K. McCutcheon, R. Singaraja, P. Kazemi-Esfarjani, R. Devon, S. U. Kim, D. E. Bredesen, F. Tufaro, and M. R. Hayden. 1998. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet.18:150-154. [[PubMed]
  • 28. Metsis, M., T. Timmusk, R. Allikmets, M. Saarma, and H. Persson. 1992. Regulatory elements and transcriptional regulation by testosterone and retinoic acid of the rat nerve growth factor receptor promoter. Gene121:247-254. [[PubMed]
  • 29. Nucifora, F. C., Jr., M. Sasaki, M. F. Peters, H. Huang, J. K. Cooper, M. Yamada, H. Takahashi, S. Tsuji, J. Troncoso, V. L. Dawson, T. M. Dawson, and C. A. Ross. 2001. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science291:2423-2428. [[PubMed]
  • 30. Perez, M. K., H. L. Paulson, S. J. Pendse, S. J. Saionz, N. M. Bonini, and R. N. Pittman. 1998. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol.143:1457-1470.
  • 31. Perutz, M. F., T. Johnson, M. Suzuki, and J. T. Finch. 1994. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA91:5355-5358.
  • 32. Peters, M. F., F. C. Nucifora, Jr., J. Kushi, H. C. Seaman, J. K. Cooper, W. J. Herring, V. L. Dawson, T. M. Dawson, and C. A. Ross. 1999. Nuclear targeting of mutant Huntingtin increases toxicity. Mol. Cell. Neurosci.14:121-128. [[PubMed]
  • 33. Poukka, H., P. J. Kallio, O. A. Janne, and J. J. Palvimo. 1996. Regulation of the rat p75 neurotrophin receptor promoter by GC element binding proteins. Biochem. Biophys. Res. Commun.229:565-570. [[PubMed]
  • 34. Reddy, P. H., M. Williams, V. Charles, L. Garrett, L. Pike-Buchanan, W. O. Whetsell, Jr., G. Miller, and D. A. Tagle. 1998. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet.20:198-202. [[PubMed]
  • 35. Sacristan, M. P., J. G. de Diego, M. Bonilla, and D. Martin-Zanca. 1999. Molecular cloning and characterization of the 5" region of the mouse trkA proto-oncogene. Oncogene18:5836-5842. [[PubMed]
  • 36. Saudou, F., S. Finkbeiner, D. Devys, and M. E. Greenberg. 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell95:55-66. [[PubMed]
  • 37. Schilling, G., M. W. Becher, A. H. Sharp, H. A. Jinnah, K. Duan, J. A. Kotzuk, H. H. Slunt, T. Ratovitski, J. K. Cooper, N. A. Jenkins, N. G. Copeland, D. L. Price, C. A. Ross, and D. R. Borchelt. 1999. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet.8:397-407. [[PubMed]
  • 38. Shimohata, T., T. Nakajima, M. Yamada, C. Uchida, O. Onodera, S. Naruse, T. Kimura, R. Koide, K. Nozaki, Y. Sano, H. Ishiguro, K. Sakoe, T. Ooshima, A. Sato, T. Ikeuchi, M. Oyake, T. Sato, Y. Aoyagi, I. Hozumi, T. Nagatsu, Y. Takiyama, M. Nishizawa, J. Goto, I. Kanazawa, I. Davidson, and N. Tanese. 2000. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet.26:29-36. [[PubMed]
  • 39. Steffan, J. S., A. Kazantsev, O. Spasic-Boskovic, M. Greenwald, Y. Z. Zhu, H. Gohler, E. E. Wanker, G. P. Bates, D. E. Housman, and L. M. Thompson. 2000. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA97:6763-6768.
  • 40. Tazawa, R., E. D. Green, K. Ohashi, K. K. Wu, and L. H. Wang. 1996. Characterization of the complete genomic structure of human thromboxane synthase gene and functional analysis of its promoter. Arch. Biochem. Biophys.334:349-356. [[PubMed]
  • 41. Wheeler, V. C., J. K. White, C. A. Gutekunst, V. Vrbanac, M. Weaver, X. J. Li, S. H. Li, H. Yi, J. P. Vonsattel, J. F. Gusella, S. Hersch, W. Auerbach, A. L. Joyner, and M. E. MacDonald. 2000. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet.9:503-513. [[PubMed]
  • 42. Yamamoto, A., J. J. Lucas, and R. Hen. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell101:57-66. [[PubMed]
  • 43. Zoghbi, H. Y., and H. T. Orr. 2000. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci.23:217-247. [[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.