Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
Journal: 2011/December - Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Abstract:
There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABA(B1b) mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA expression in the prefrontal cortex and amygdala, but increased GABA(Aα2) in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.
Relations:
Content
Citations
(529)
References
(47)
Clinical trials
(4)
Diseases
(1)
Conditions
(1)
Drugs
(1)
Chemicals
(5)
Genes
(2)
Organisms
(4)
Processes
(3)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Proc Natl Acad Sci U S A 108(38): 16050-16055

Ingestion of <em>Lactobacillus</em> strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve

Behavioral Effects of L. rhamnosus (JB-1) Administration.

A battery of behavioral tests relevant to anxiety and depression was carried out. The stress-induced hyperthermia (SIH) and elevated plus maze (EPM) tests are widely used for assessing functional consequences of alterations in GABA neurotransmission (22, 23). Chronic administration of L. rhamnosus (JB-1) produced a nonsignificant reduction in SIH (t = 1.567, df = 34; P = 0.1263; Fig. 1A). On the EPM, animals treated with L. rhamnosus (JB-1) had a larger number of entries to the open arms than broth-fed animals, suggesting anxiolytic effects (open arm entry defined as all four paws entering the arms of the EPM apparatus) (t = 4.662, df = 34; P < 0.001; Fig. 1A). This effect is also reflected in the percentage of time spent in the open arms, although this observation did not reach statistical significance [broth v. L. rhamnosus (JB-1): 25.28 ± 6.67% vs. 38.36 ± 7.99%; t = 1.267, df = 34; P = 0.2146].

An external file that holds a picture, illustration, etc.
Object name is pnas.1102999108fig01.jpg

Effect of L. rhamnosus (JB-1) administration on behavior and stress-induced levels of corticosterone. (A) Stress-induced hyperthermia (SIH). There were no significant differences between L. rhamnosus (JB-1)-fed (n = 16) and broth-fed animals (n = 20). Elevated plus maze (EPM). Mice fed with the Lactobacillus (n = 16) entered significantly more times (***P < 0.001) into the open arms of the EPM apparatus in comparison with broth-fed mice (n = 20). (C) Forced swim test (FST). Animals fed with L. rhamnosus (JB-1) (n = 8) spent less time immobile (**P < 0.01) compared with broth-fed mice (n = 8). (B) Effect of L. rhamnosus (JB-1) on fear-related behaviors. On day 1, analysis revealed no differences in the learning curves between L. rhamnosus (JB-1)-fed mice (n = 16) and broth-fed control animals (n = 20). On day 2 (memory testing), L. rhamnosus (JB-1) treated animals displayed an enhanced memory towards cues (represented by the white boxes underneath the x axis. **P< 0.01 for cue no. 5 and *P < 0.05 for cue no. 6) and context (represented by the grey boxes underneath the x axis. *P < 0.05 for context 6). On day 3 (memory extinction), no differences were observed between the two treatment groups. (C) Effect of L. rhamnosus (JB-1) administration on stress-induced levels of corticosterone. Stress-induced corticosterone was measured in plasma 30 min after FST. Stress-induced levels of corticosterone are significantly lower in L. rhamnosus (JB-1)-fed mice compared with broth fed control animals (###P < 0.001).

Fear conditioning is also an ideal method for assessing cognitive aspects of anxiety behavior, and the response to context and specific cues are thought to reflect alterations in hippocampus and amygdala, respectively (24, 25) Analysis of the overall 3-d freezing behavior (the total percentage of freezing behaviors on each day) showed a significant interaction between conditioning day and L. rhamnosus (JB-1) treatment [F(2, 62) = 5.394; P < 0.01]. In addition, there was a significant effect of conditioning day [F(2, 62) = 19.31; P < 0.0001], whereas the overall effect of L. rhamnosus (JB-1) treatment was not significant [F(1, 62) = 1.469; P = 0.2346]. Post hoc analysis revealed no significant difference in the percentage of freezing behaviors on the first (acquisition) or third (extinction) phases, but did show a significant effect on day 2 (recall phase) of the test. Upon subdividing the analysis into the component freezing bouts, it was revealed that these differences are due to the significantly higher percentage of freezing behaviors of L. rhamnosus (JB-1)-fed mice during cue sessions 5 (P < 0.01) and 6 (P < 0.05) and context session 6 (P < 0.05) in comparison with broth-fed mice (Fig. 1B).

Regarding depression-related behavior, the forced swim test (FST) analysis revealed that L. rhamnosus (JB-1)-fed animals spent significantly less time immobile, compared with broth-fed mice (t = 3.926, df = 14; P < 0.01; Fig. 1A).

Effects of L. rhamnosus (JB-1) Administration on Stress-Induced Corticosterone Levels.

There was a significant interaction between acute stress and L. rhamnosus (JB-1) treatment [F(1, 28) = 7.425; P = 0.011], a significant effect of acute stress [F(1, 28) = 73.90; P < 0.0001] and L. rhamnosus (JB-1) treatment [F(1, 28) = 11.409; P = 0.0022] on corticosterone levels. Post hoc analysis showed that the levels of stress-induced corticosterone are significantly lower in stressed mice that received L. rhamnosus (JB-1) (P < 0.001) than the levels of the hormone in stressed broth-fed mice (Fig. 1C).

Effects of L. rhamnosus (JB-1) on GABA Receptor Expression.

GABAB1b mRNA.

There was a differential expression of this transcript in the different studied areas. Higher levels of GABAB1b mRNA were found in cingulate cortex 1 (CG1) (Fig. 2A) and prelimbic (PrL) (Fig. 2B) cortical areas of L. rhamnosus (JB-1)-fed mice in comparison with broth-fed mice (t = 3.485, df = 10, P < 0.01; and t = 2.965, df = 10, P < 0.05, respectively), but no differences were observed in the infralimbic (IL) cortex (t = 0.4558, df = 10, P = 0.658; Fig. 2C). Conversely, L. rhamnosus (JB-1)-fed mice had lower levels of GABAB1b mRNA in the basolateral amygdala (BLA) (t = 8.778, df = 10, P < 0.001; Fig. 2D) and central amygdala (CeA) (t = 3.372, df = 10, P < 0.01; Fig. 2E), locus coeruleus (LC) (t = 5.339, df = 10, P < 0.001; Fig. 2F), hippocampal sub areas of the dentate gyrus (DG) (t = 5.555, df = 10, P < 0.001; Fig. 2G), cornus ammonis area 3 (CA3) (t = 3.207, df = 10, P < 0.01; Fig. 2H), and cornus ammonis area 1 (CA1) (t = 3.826, df = 10, P < 0.01; Fig. 2I) compared with broth-fed control mice.

An external file that holds a picture, illustration, etc.
Object name is pnas.1102999108fig02.jpg

Effect of L. rhamnosus (JB-1) administration on central GABAB1b mRNA expression. Mice fed with L. rhamnosus (JB-1) (n = 6) had higher levels of GABAB1b mRNA in the cingulate 1 (CG1) (A) and prelimbic (PrL) (B) cortices in comparison with broth fed control mice (n = 6). However, no differences between the two groups were observed in the infralimbic (IL) cortex (C). On the other hand, L. rhamnosus (JB-1) fed animals showed reduced levels of GABAB1b mRNA in the basolateral amygdala (BLA) (D), central amygdala (CeA) (E), locus coeruleus (LC) (F), dentate gyrus (DG) (G), cornus ammonis region 3 (CA3) (H), and cornus ammonis region 1 (CA1) (I) in comparison with broth fed mice. Values represent pixel density (*P < 0.05; **P < 0.01; ***P < 0.001).

GABAAα2 mRNA.

A differential expression of GABAAα2 mRNA within the studied areas was also found (Fig. 3). In L. rhamnosus (JB-1)-fed animals, there were low levels of GABAAα2 mRNA in CG1 (t = 2.611, df = 10, P < 0.05; Fig. 3A), PrL (t = 2.267, df = 10, P < 0.05; Fig. 3B), and IL (t = 2.803, df = 10, P < 0.05; Fig. 3C) cortical areas, as well as in the BLA (t = 7.541, df = 10, P < 0.001; Fig. 3D) and CeA (t = 7.150, df = 10, P < 0.001; Fig. 3E), in comparison with broth-fed mice. In addition, no differences in GABAAα2 mRNA were found in the LC between the two groups of mice (t = 1.190, df = 10, P = 0.2616; Fig. 3F); however, higher levels of GABAAα2 mRNA were found in the DG of L. rhamnosus (JB-1)-fed mice in comparison with broth-fed control animals (t = 5.967, df = 10, P < 0.001; Fig. 3G). No differences in GABAAα2 mRNA were found in CA3 (t = 0.403, df = 10, P = 0.6955; Fig. 3H) and CA1 (t = 2.161, df = 10, P = 0.0560; Fig. 3I) neuronal layer of the hippocampus of L. rhamnosus (JB-1) compared with broth-fed mice.

An external file that holds a picture, illustration, etc.
Object name is pnas.1102999108fig03.jpg

Effect of L. rhamnosus (JB-1) administration on central GABAAα2 mRNA expression. Mice fed with L. rhamnosus (JB-1) (n = 6) had lower levels of GABAAα2 mRNA in CG1 (A) PrL (B), and IL (C) cortices. In addition, GABAAα2 mRNA was also reduced in the BLA (D) and CeA (E) of L. rhamnosus (JB-1) fed mice in comparison with broth fed animals. No differences in GABAAα2 mRNA between the two groups were observed in the LC (F). On the contrary, GABAAα2 mRNA is increased in the DG (G) of L. rhamnosus (JB-1) fed animals in comparison with broth control mice, but no differences were observed in CA3 (H) and CA1 (I). Values represent pixel density (*P < 0.05; ***P < 0.001).

GABAB1b mRNA.

There was a differential expression of this transcript in the different studied areas. Higher levels of GABAB1b mRNA were found in cingulate cortex 1 (CG1) (Fig. 2A) and prelimbic (PrL) (Fig. 2B) cortical areas of L. rhamnosus (JB-1)-fed mice in comparison with broth-fed mice (t = 3.485, df = 10, P < 0.01; and t = 2.965, df = 10, P < 0.05, respectively), but no differences were observed in the infralimbic (IL) cortex (t = 0.4558, df = 10, P = 0.658; Fig. 2C). Conversely, L. rhamnosus (JB-1)-fed mice had lower levels of GABAB1b mRNA in the basolateral amygdala (BLA) (t = 8.778, df = 10, P < 0.001; Fig. 2D) and central amygdala (CeA) (t = 3.372, df = 10, P < 0.01; Fig. 2E), locus coeruleus (LC) (t = 5.339, df = 10, P < 0.001; Fig. 2F), hippocampal sub areas of the dentate gyrus (DG) (t = 5.555, df = 10, P < 0.001; Fig. 2G), cornus ammonis area 3 (CA3) (t = 3.207, df = 10, P < 0.01; Fig. 2H), and cornus ammonis area 1 (CA1) (t = 3.826, df = 10, P < 0.01; Fig. 2I) compared with broth-fed control mice.

An external file that holds a picture, illustration, etc.
Object name is pnas.1102999108fig02.jpg

Effect of L. rhamnosus (JB-1) administration on central GABAB1b mRNA expression. Mice fed with L. rhamnosus (JB-1) (n = 6) had higher levels of GABAB1b mRNA in the cingulate 1 (CG1) (A) and prelimbic (PrL) (B) cortices in comparison with broth fed control mice (n = 6). However, no differences between the two groups were observed in the infralimbic (IL) cortex (C). On the other hand, L. rhamnosus (JB-1) fed animals showed reduced levels of GABAB1b mRNA in the basolateral amygdala (BLA) (D), central amygdala (CeA) (E), locus coeruleus (LC) (F), dentate gyrus (DG) (G), cornus ammonis region 3 (CA3) (H), and cornus ammonis region 1 (CA1) (I) in comparison with broth fed mice. Values represent pixel density (*P < 0.05; **P < 0.01; ***P < 0.001).

GABAAα2 mRNA.

A differential expression of GABAAα2 mRNA within the studied areas was also found (Fig. 3). In L. rhamnosus (JB-1)-fed animals, there were low levels of GABAAα2 mRNA in CG1 (t = 2.611, df = 10, P < 0.05; Fig. 3A), PrL (t = 2.267, df = 10, P < 0.05; Fig. 3B), and IL (t = 2.803, df = 10, P < 0.05; Fig. 3C) cortical areas, as well as in the BLA (t = 7.541, df = 10, P < 0.001; Fig. 3D) and CeA (t = 7.150, df = 10, P < 0.001; Fig. 3E), in comparison with broth-fed mice. In addition, no differences in GABAAα2 mRNA were found in the LC between the two groups of mice (t = 1.190, df = 10, P = 0.2616; Fig. 3F); however, higher levels of GABAAα2 mRNA were found in the DG of L. rhamnosus (JB-1)-fed mice in comparison with broth-fed control animals (t = 5.967, df = 10, P < 0.001; Fig. 3G). No differences in GABAAα2 mRNA were found in CA3 (t = 0.403, df = 10, P = 0.6955; Fig. 3H) and CA1 (t = 2.161, df = 10, P = 0.0560; Fig. 3I) neuronal layer of the hippocampus of L. rhamnosus (JB-1) compared with broth-fed mice.

An external file that holds a picture, illustration, etc.
Object name is pnas.1102999108fig03.jpg

Effect of L. rhamnosus (JB-1) administration on central GABAAα2 mRNA expression. Mice fed with L. rhamnosus (JB-1) (n = 6) had lower levels of GABAAα2 mRNA in CG1 (A) PrL (B), and IL (C) cortices. In addition, GABAAα2 mRNA was also reduced in the BLA (D) and CeA (E) of L. rhamnosus (JB-1) fed mice in comparison with broth fed animals. No differences in GABAAα2 mRNA between the two groups were observed in the LC (F). On the contrary, GABAAα2 mRNA is increased in the DG (G) of L. rhamnosus (JB-1) fed animals in comparison with broth control mice, but no differences were observed in CA3 (H) and CA1 (I). Values represent pixel density (*P < 0.05; ***P < 0.001).

Effects of L. rhamnosus (JB-1) Administration on the Behavior of Vagotomized Mice.

To further understand the role of the vagus nerve in communicating sensory information to the brain, subdiaphragmatic vagotomy (Vx) was carried out, and behavioral parameters were determined. As shown in Fig. 4A, two-way ANOVA revealed that there was an overall effect of Vx [F(1, 36) = 8.91; P < 0.01], an overall effect of L. rhamnosus (JB-1) treatment [F(1, 36) = 5.80; P < 0.05], and an interaction between Vx and L. rhamnosus (JB-1) [F(1, 36) = 5.690; P < 0.05]. In terms of time in the center of the open field arena, Vx prevented the anxiolytic effects of L. rhamnosus (JB-1) in mice, which is reflected in a reduction of the time spent in the center of the open field compared with sham surgery animals fed with L. rhamnosus (JB-1) (P < 0.05). That Vx prevented the anxiolytic effect of L. rhamnosus (JB-1) is further verified because the analysis of the number entries to the central area of the open field reflects a similar profile as in the percentage of time spent in the central part of the arena [Fig. 6A; effect of Vx: F(1, 36) = 5.56, P < 0.05; effect of L. rhamnosus (JB-1): F(1, 36) = 4.64, P < 0.05; interaction between Vx and L. rhamnosus (JB-1): F(1, 36) = 7.66, P < 0.01]. This exploratory behavior seems to be related to an anxiolytic effect, because the total distance traveled by the mice in each experimental condition did not differ between them [F(1, 36) = 0.44, P = 0.51; Fig. 4A].

An external file that holds a picture, illustration, etc.
Object name is pnas.1102999108fig04.jpg

Effect of vagotomy (Vx) on anxiety and depression-like behaviors and GABAA subunit expression of animals treated with L. rhamnosus (JB-1). (A) Sham/L. rhamnosus (JB-1) treated mice (n = 10) (white bars) spent more time in the central area of an open field arena in comparison with sham/broth animals (n = 10) (black bars). This behavior is reflected in the number of entries into the central area of the open field with sham/L. rhamnosus (JB-1) mice (n = 10) performing significantly more entries into this area than sham/broth treated animals. These behaviors are prevented by Vx. These differences are not due to an effect on locomotion, as the distance travelled within the open field is no different between the experimental groups. In the FST sham/L. rhamnosus (JB-1) (n = 10) mice spent less time immobile than sham/broth animals (n = 10) an effect prevented by Vx. (B) Sham/L. rhamnosus (JB-1) mice (n = 6) have significantly higher levels of GABAAα2 mRNA expression in the DG and CA3 areas in comparison with sham/broth animals (n = 6). No significant differences were observed in CA1 between the same experimental groups. Vx prevented any further effect of L. rhamnosus (JB-1) on hippocampal GABAAα2 mRNA expression in the DG CA3 and CA1. (C) Sham/L. rhamnosus (JB-1) (n = 6) mice have significantly lower levels of GABAAα1 mRNA in the DG, CA3, and CA1 in comparison with sham/broth (n = 6) animals. Vx prevented any effect of L. rhamnosus (JB-1) on hippocampal GABAAα1 mRNA expression in the DG, CA3, and CA1 areas in the two experimental groups. (*P < 0.05; ***P < 0.001).

In addition, FST revealed that there was an overall effect of Vx [F(1, 36) = 5.14, P < 0.05], an overall effect of L. rhamnosus (JB-1) treatment [F(1, 36) = 10.47, P = 0.01], and an interaction between Vx and L. rhamnosus (JB-1) [F(1, 36) = 6.22, P < 0.05] in terms of immobility time. Post hoc analysis showed that sham animals fed with L. rhamnosus (JB-1) had significantly lower mobility time (P < 0.05) compared with sham animals fed with broth (Fig. 4A). This effect was prevented by Vx, because immobility time of Vx animals fed with L. rhamnosus (JB-1) was similar to the immobility time of control mice (P > 0.05).

Effects of L. rhamnosus (JB-1) Administration on GABA Receptor mRNA Expression: Role of Vagus Nerve.

In our first series of studies, we showed that administration of L. rhamnosus (JB-1) for 28 d had marked and distinct effects on the expression of transcripts for GABAB1b and GABAAα2 receptors subunits in prefrontal cortex, amygdala, hippocampus, and LC compared with broth-fed animals. These findings suggest that the behavioral changes observed could be due to the effects of L. rhamnosus (JB-1) on brain mRNA expression. Thus, to elucidate a mechanistic means as to how L. rhamnosus (JB-1) can affect GABA receptor mRNA expression, in situ hybridization of the two major GABAA receptor subunits was performed in the brains of Vx mice.

GABAAα2 mRNA.

Statistical analysis revealed that there is a significant interaction between L. rhamnosus (JB-1) treatment and Vx on GABAAα2 mRNA levels [F(1, 20) = 5.674, P = 0.0273] in the BLA and also in the CeA [F(1, 20) = 4.756, P = 0.0413]. There is also an effect of Vx in both areas [BLA: F(1, 20) = 8.532, P = 0.0084; CeA: F(1, 20) = 4.84, P = 0.0397] and an effect of treatment only in the BLA [F(1, 20) = 12.75, P = 0.0019], but not in the CeA [F(1, 20) = 3.586, P = 0.0728; Fig. S1]. Post hoc analysis found that in sham animals, L. rhamnosus (JB-1) significantly reduced the levels of GABAAα2 mRNA in the BLA (P < 0.001) and CeA (P < 0.05) areas of the amygdala in comparison with sham animals fed with broth (Fig. S1 A and B), which is consistent with our initial findings (Fig. 3 D and E). This effect on the GABAAα2 transcript was completely prevented by Vx (Fig. S1 C and D).

In the hippocampus, ANOVA revealed that there was no interaction between L. rhamnosus (JB-1) and Vx on the levels of GABAAα2 mRNA in any of the studied areas [DG: F(1, 20) = 3.47, P = 0.0772; CA3: F(1, 20) = 1.84, P = 0.1900; CA1: F(1, 20) = 1.51, P = 0.2327]. However, it did show an effect of L. rhamnosus (JB-1) in the DG [F(1, 20) = 6.36, P = 0.02038] and also in CA3 [F(1, 20) = 6.66, P = 0.0179], but not in CA1 [F(1, 20) = 4.13, P = 0.0557]. Additionally, an effect of Vx was only observed in the DG [F(1, 20) = 5.86, P = 0.0248], but not in CA3 [F(1, 20) = 3.09, P = 0.0941] or CA1 [F(1, 20) = 1.47, P = 0.2393]. Post hoc analysis showed that sham animals fed with L. rhamnosus (JB-1) had significantly higher levels of GABAAα2 mRNA in the DG (P < 0.05) and CA3 (P < 0.05; Fig. 4B), in comparison with sham animals fed with broth. Vx in broth-fed animals increased the levels of GABAAα2 mRNA in the different hippocampal areas, while L. rhamnosus (JB-1) did not affect the action of Vx on the hippocampus (Fig. 4B; representative images in Fig. S2).

GABAAα1 mRNA.

Densitometric analysis of GABAAα1 mRNA showed an interaction between Vx and L. rhamnosus (JB-1) treatment in both studied areas of the amygdala [BLA: F(1, 20) = 33.43, P < 0.0001; CeA: F(1, 20) = 15.19, P = 0.0009; Fig. S3]. This analysis revealed an effect of Vx on GABAAα1 mRNA [BLA: F(1, 20) = 49.80, P < 0.0001; CeA: F(1, 20) = 73.91, P < 0.0001) and an effect of L. rhamnosus (JB-1) administration on this same transcript [BLA: F(1, 20) = 44.53, P < 0.0001; CeA: F(1, 20) = 12.77, P = 0.0019). Post hoc analysis showed that animals that had sham Vx surgery and were fed with L. rhamnosus (JB-1) showed significant reduction in GABAAα1 mRNA in the BLA (P < 0.0001; Fig. S3A) and CeA (P < 0.0001; Fig. S3B), in comparison with sham animals fed with broth. In addition, no differences in GABAAα1 mRNA were found in L. rhamnosus (JB-1) or broth-fed Vx animals compared with sham control mice.

In the hippocampus, analysis of the levels of GABAAα1 mRNA revealed an interaction between Vx and L. rhamnosus (JB-1) treatment in all studied areas [DG: F(1, 20) = 21.80, P = 0.0001; CA3: F(1, 20) = 19.133, P = 0.0003; CA1: F(1, 20) = 22.87, P = 0.0001; Fig. 4C]. In addition, an effect of L. rhamnosus (JB-1) was observed in the DG [F(1, 20) = 12.49, P = 0.0021], CA3 [F(1, 20) = 13.49, P = 0.0015], and in CA1 [F(1, 20) = 25.66, P < 0.0001]. However, an effect of Vx was only observed in the DG [F(1, 20) = 9.751, P = 0.0054], but not in the CA3 [F(1, 20) = 2.357, P = 0.1404] or CA1 [F(1, 20) = 1.28, P = 0.2713]. Post hoc analysis found significant reductions in GABAAα1 mRNA in the DG (P < 0.0001), CA3 (P < 0.0001), and CA1 (P < 0.0001; Fig. 4C) in comparison with sham control animals only fed with broth. Vx did not affect the expression of GABAAα1 mRNA in broth-fed animals, and it prevented the effects of L. rhamnosus (JB-1) on GABAAα1 mRNA expression in the analyzed areas (Fig. 4C; representative images in Fig. S4).

GABAAα2 mRNA.

Statistical analysis revealed that there is a significant interaction between L. rhamnosus (JB-1) treatment and Vx on GABAAα2 mRNA levels [F(1, 20) = 5.674, P = 0.0273] in the BLA and also in the CeA [F(1, 20) = 4.756, P = 0.0413]. There is also an effect of Vx in both areas [BLA: F(1, 20) = 8.532, P = 0.0084; CeA: F(1, 20) = 4.84, P = 0.0397] and an effect of treatment only in the BLA [F(1, 20) = 12.75, P = 0.0019], but not in the CeA [F(1, 20) = 3.586, P = 0.0728; Fig. S1]. Post hoc analysis found that in sham animals, L. rhamnosus (JB-1) significantly reduced the levels of GABAAα2 mRNA in the BLA (P < 0.001) and CeA (P < 0.05) areas of the amygdala in comparison with sham animals fed with broth (Fig. S1 A and B), which is consistent with our initial findings (Fig. 3 D and E). This effect on the GABAAα2 transcript was completely prevented by Vx (Fig. S1 C and D).

In the hippocampus, ANOVA revealed that there was no interaction between L. rhamnosus (JB-1) and Vx on the levels of GABAAα2 mRNA in any of the studied areas [DG: F(1, 20) = 3.47, P = 0.0772; CA3: F(1, 20) = 1.84, P = 0.1900; CA1: F(1, 20) = 1.51, P = 0.2327]. However, it did show an effect of L. rhamnosus (JB-1) in the DG [F(1, 20) = 6.36, P = 0.02038] and also in CA3 [F(1, 20) = 6.66, P = 0.0179], but not in CA1 [F(1, 20) = 4.13, P = 0.0557]. Additionally, an effect of Vx was only observed in the DG [F(1, 20) = 5.86, P = 0.0248], but not in CA3 [F(1, 20) = 3.09, P = 0.0941] or CA1 [F(1, 20) = 1.47, P = 0.2393]. Post hoc analysis showed that sham animals fed with L. rhamnosus (JB-1) had significantly higher levels of GABAAα2 mRNA in the DG (P < 0.05) and CA3 (P < 0.05; Fig. 4B), in comparison with sham animals fed with broth. Vx in broth-fed animals increased the levels of GABAAα2 mRNA in the different hippocampal areas, while L. rhamnosus (JB-1) did not affect the action of Vx on the hippocampus (Fig. 4B; representative images in Fig. S2).

GABAAα1 mRNA.

Densitometric analysis of GABAAα1 mRNA showed an interaction between Vx and L. rhamnosus (JB-1) treatment in both studied areas of the amygdala [BLA: F(1, 20) = 33.43, P < 0.0001; CeA: F(1, 20) = 15.19, P = 0.0009; Fig. S3]. This analysis revealed an effect of Vx on GABAAα1 mRNA [BLA: F(1, 20) = 49.80, P < 0.0001; CeA: F(1, 20) = 73.91, P < 0.0001) and an effect of L. rhamnosus (JB-1) administration on this same transcript [BLA: F(1, 20) = 44.53, P < 0.0001; CeA: F(1, 20) = 12.77, P = 0.0019). Post hoc analysis showed that animals that had sham Vx surgery and were fed with L. rhamnosus (JB-1) showed significant reduction in GABAAα1 mRNA in the BLA (P < 0.0001; Fig. S3A) and CeA (P < 0.0001; Fig. S3B), in comparison with sham animals fed with broth. In addition, no differences in GABAAα1 mRNA were found in L. rhamnosus (JB-1) or broth-fed Vx animals compared with sham control mice.

In the hippocampus, analysis of the levels of GABAAα1 mRNA revealed an interaction between Vx and L. rhamnosus (JB-1) treatment in all studied areas [DG: F(1, 20) = 21.80, P = 0.0001; CA3: F(1, 20) = 19.133, P = 0.0003; CA1: F(1, 20) = 22.87, P = 0.0001; Fig. 4C]. In addition, an effect of L. rhamnosus (JB-1) was observed in the DG [F(1, 20) = 12.49, P = 0.0021], CA3 [F(1, 20) = 13.49, P = 0.0015], and in CA1 [F(1, 20) = 25.66, P < 0.0001]. However, an effect of Vx was only observed in the DG [F(1, 20) = 9.751, P = 0.0054], but not in the CA3 [F(1, 20) = 2.357, P = 0.1404] or CA1 [F(1, 20) = 1.28, P = 0.2713]. Post hoc analysis found significant reductions in GABAAα1 mRNA in the DG (P < 0.0001), CA3 (P < 0.0001), and CA1 (P < 0.0001; Fig. 4C) in comparison with sham control animals only fed with broth. Vx did not affect the expression of GABAAα1 mRNA in broth-fed animals, and it prevented the effects of L. rhamnosus (JB-1) on GABAAα1 mRNA expression in the analyzed areas (Fig. 4C; representative images in Fig. S4).

Animals.

Adult male BALB/c mice (n = 36) were used and maintained as described in SI Materials and Methods.

Bacterial Preparation and Strain Designation.

See SI Materials and Methods for further details.

Treatments and Sacrifice.

All experimental procedures were carried out in accordance with the protocols approved by the Ethics Committee, University College Cork under a license issued from the Department of Health and Children [Cruelty to Animal Act 1876, Directive for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (89/609/EEC)]. Experiments conducted in Canada were similarly approved by the Animal Ethics committee of McMaster University. See SI Materials and Methods for further details.

In Situ Hybridization.

The in situ hybridization was conducted as described (48) and as described in SI Materials and Methods.

Behavioral Testing.

Open field test, SIH, EPM, fear conditioning (contextual and cued), and FST were carried out as detailed in SI Materials and Methods.

Corticosterone Determination.

Plasma corticosterone concentration was determined with a Correlate-EIA enzyme immunoassay kit (Assay Designs) according to manufacturer's instructions. The detection range of this method is from 32 to 20,000 pg/mL.

Statistical Analysis.

Results are expressed as mean ± SEM. Data were analyzed with a two-tailed Student's t test or two-way ANOVA. Statistical significance was accepted at the level P < 0.05.

Supplementary Material

Supporting Information:
Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre,
School of Pharmacy, and Departments of
Psychiatry and
Anatomy, University College Cork, Cork, Ireland;
The McMaster Brain–Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada, L8N 4A6; and Departments of
Medicine and
Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4L8
To whom correspondence may be addressed. E-mail: ac.retsamcm@sneneib or ei.ccu@nayrc.j.
Edited by Todd R. Klaenhammer, North Carolina State University, Raleigh, NC, and approved July 27, 2011 (received for review February 27, 2011)

Author contributions: J.A.B., P.F., M.V.C., H.M.S., T.G.D., J.B., and J.F.C. designed research; J.A.B., P.F., M.V.C., E.E., and H.M.S. performed research; J.A.B., P.F., H.M.S., J.B., and J.F.C. analyzed data; and J.A.B., P.F., T.G.D., J.B., and J.F.C. wrote the paper.

J.A.B. and P.F. contributed equally to this work.
Edited by Todd R. Klaenhammer, North Carolina State University, Raleigh, NC, and approved July 27, 2011 (received for review February 27, 2011)

Abstract

There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.

Keywords: brain–gut axis, irritable bowel syndrome, probiotic, fear conditioning, cognition
Abstract

There is increasing evidence suggesting an interaction between the intestinal microbiota, the gut, and the central nervous system (CNS) in what is recognized as the microbiome–gut–brain axis (14). Studies in rodents have implicated dysregulation of this axis in functional bowel disorders, including irritable bowel syndrome. Indeed, visceral perception in rodents can be affected by alterations in gut microbiota (5). Moreover, it has been shown that the absence and/or modification of the gut microflora in mice affects the hypothalamic–pituitary–adrenal (HPA) axis response to stress (6, 7) and anxiety behavior (8, 9), which is important given the high comorbidity between functional gastrointestinal disorders and stress-related psychiatric disorders, such as anxiety and depression (10). In addition, pathogenic bacteria in rodents can induce anxiety-like behaviors, which are mediated via vagal afferents (9, 11).

GABA is the main inhibitory neurotransmitter of the CNS, the effects of which are mediated through two major classes of receptors—the ionotropic GABAA receptors, which exist as a number of subtypes formed by the coassembly of different subunits (α, β, and γ subunits; ref. 12), and the GABAB receptors, which are G protein coupled and consist of a heterodimer made up of two subunits (GABAB1 and GABAB2), both of which are necessary for GABAB receptor functionality (13). These receptors are important pharmacological targets for clinically relevant antianxiety agents (e.g., benzodiazepines acting on GABAA receptors), and alterations in the GABAergic system have important roles in the development of stress-related psychiatric conditions.

Probiotic bacteria are living organisms that can inhabit the gut and contribute to the health of the host (14). Accumulating clinical evidence suggests that probiotics can modulate the stress response and improve mood and anxiety symptoms in patients with chronic fatigue and irritable bowel syndrome (15, 16). One such organism is Lactobacillus rhamnosus (JB-1), which has been demonstrated to modulate the immune system because it prevents the induction of IL-8 by TNF-α in human colon epithelial cell lines (T84 and HT-29) (17) and modulates inflammation through the generation of regulatory T cells (18). Moreover, it inhibits the cardio–autonomic response to colorectal distension (CRD) in rats (19), reduces CRD-induced dorsal root ganglia excitability (20), and affects small intestine motility (21).

It is currently unclear whether potential probiotics such as L. rhamnosus (JB-1) could affect brain function, especially in normal, healthy animals. To this end, we sought to assess whether this bacteria could mediate direct effects on the GABAergic system. In parallel, behaviors relevant to GABAergic neurotransmission and the stress response were assessed subsequent to L. rhamnosus (JB-1) administration. Finally, the role of the vagus nerve in mediating such effects was also investigated by examining these parameters in subdiaphragmatically vagotomized mice.

Click here to view.

Acknowledgments

We thank Dr. Lu Wang for performing the vagotomy experiments. This work was supported by the McMaster Integrative Neuroscience Discovery and Study Programme (MiNDS), the Giovanni and Concetta Guglietti Family Foundation, Abbott Nutrition, and St. Joseph's Healthcare Hamilton. The Alimentary Pharmabiotic Centre is funded by Science Foundation Ireland Grants 02/CE/B124 and 07/CE/B1368.

Acknowledgments

Footnotes

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1102999108/-/DCSupplemental.

Footnotes

References

  • 1. Bercik P, et al Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139:2102–2112.[PubMed][Google Scholar]
  • 2. Cryan JF, O'Mahony SMThe microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil. 2011;23:187–192.[PubMed][Google Scholar]
  • 3. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock JMood and gut feelings. Brain Behav Immun. 2010;24:9–16.[PubMed][Google Scholar]
  • 4. Rhee SH, Pothoulakis C, Mayer EAPrinciples and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–314.[Google Scholar]
  • 5. Rousseaux C, et al Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–37.[PubMed][Google Scholar]
  • 6. Sudo N, et al Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–275.[Google Scholar]
  • 7. Neufeld KM, Kang N, Bienenstock J, Foster JAReduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23:255–264. e119. [[PubMed][Google Scholar]
  • 8. Heijtz RD, et al Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–3052.[Google Scholar]
  • 9. Lyte M, Li W, Opitz N, Gaykema RP, Goehler LEInduction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav. 2006;89:350–357.[PubMed][Google Scholar]
  • 10. Gros DF, Antony MM, McCabe RE, Swinson RPFrequency and severity of the symptoms of irritable bowel syndrome across the anxiety disorders and depression. J Anxiety Disord. 2009;23:290–296.[PubMed][Google Scholar]
  • 11. Goehler LE, et al Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19:334–344.[PubMed][Google Scholar]
  • 12. Rudolph U, Möhler HAnalysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol. 2004;44:475–498.[PubMed][Google Scholar]
  • 13. Cryan JF, Kaupmann KDon't worry ‘B’ happy!: A role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26:36–43.[PubMed][Google Scholar]
  • 14. Gareau MG, Sherman PM, Walker WAProbiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7:503–514.[Google Scholar]
  • 15. Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GRClinical trial: The effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29:508–518.[PubMed][Google Scholar]
  • 16. Rao AV, et al A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009;1:6.[Google Scholar]
  • 17. Ma D, Forsythe P, Bienenstock JLive Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun. 2004;72:5308–5314.[Google Scholar]
  • 18. Karimi K, Inman MD, Bienenstock J, Forsythe PLactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med. 2009;179:186–193.[PubMed][Google Scholar]
  • 19. Kamiya T, et al Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut. 2006;55:191–196.[Google Scholar]
  • 20. Ma X, et al Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. Am J Physiol Gastrointest Liver Physiol. 2009;296:G868–G875.[PubMed][Google Scholar]
  • 21. Wang B, et al Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J. 2010;24:4078–4088.[PubMed][Google Scholar]
  • 22. Vinkers CH, Cryan JF, Olivier B, Groenink LElucidating GABAA and GABAB receptor functions in anxiety using the stress-induced hyperthermia paradigm: A review. Open Pharmacol J. 2010;4:1–14.[PubMed][Google Scholar]
  • 23. Pellow S, Chopin P, File SE, Briley MValidation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14:149–167.[PubMed][Google Scholar]
  • 24. Brinks V, de Kloet ER, Oitzl MSCorticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp Neurol. 2009;216:375–382.[PubMed][Google Scholar]
  • 25. Phillips RG, LeDoux JEDifferential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–285.[PubMed][Google Scholar]
  • 26. O'Mahony SM, et al Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65:263–267.[PubMed][Google Scholar]
  • 27. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JAcAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci. 2002;22:3262–3268.[Google Scholar]
  • 28. O'Mahony L, et al Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128:541–551.[PubMed][Google Scholar]
  • 29. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MHProbiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56:1522–1528.[Google Scholar]
  • 30. Lightman SL, et al The significance of glucocorticoid pulsatility. Eur J Pharmacol. 2008;583:255–262.[PubMed][Google Scholar]
  • 31. Slattery DA, Desrayaud S, Cryan JFGABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. J Pharmacol Exp Ther. 2005;312:290–296.[PubMed][Google Scholar]
  • 32. Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JFSpecific roles of GABA(B(1)) receptor isoforms in cognition. Behav Brain Res. 2007;181:158–162.[Google Scholar]
  • 33. Jacobson LH, Bettler B, Kaupmann K, Cryan JFBehavioral evaluation of mice deficient in GABA(B(1)) receptor isoforms in tests of unconditioned anxiety. Psychopharmacology (Berl) 2007;190:541–553.[PubMed][Google Scholar]
  • 34. Gareau MG, et al Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60:307–317.[PubMed][Google Scholar]
  • 35. Messaoudi M, et al Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105:755–764.[PubMed][Google Scholar]
  • 36. Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JFGABA(B(1)) receptor isoforms differentially mediate the acquisition and extinction of aversive taste memories. J Neurosci. 2006;26:8800–8803.[Google Scholar]
  • 37. Burgos-Robles A, Vidal-Gonzalez I, Quirk GJSustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci. 2009;29:8474–8482.[Google Scholar]
  • 38. Jacobson-Pick S, Elkobi A, Vander S, Rosenblum K, Richter-Levin GJuvenile stress-induced alteration of maturation of the GABAA receptor alpha subunit in the rat. Int J Neuropsychopharmacol. 2008;11:891–903.[PubMed][Google Scholar]
  • 39. Wiltgen BJ, et al The alpha1 subunit of the GABA(A) receptor modulates fear learning and plasticity in the lateral amygdala. Front Behav Neurosci. 2009;3:37.[Google Scholar]
  • 40. Crestani F, et al Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci. 1999;2:833–839.[PubMed][Google Scholar]
  • 41. Helm KA, et al GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology. 2005;48:956–964.[PubMed][Google Scholar]
  • 42. Zheng G, et al Evidence for a role of GABAA receptor in the acute restraint stress-induced enhancement of spatial memory. Brain Res. 2007;1181:61–73.[PubMed][Google Scholar]
  • 43. Zuo Y, Smith DC, Jensen RAVagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav. 2007;90:583–589.[Google Scholar]
  • 44. Nemeroff CB, et al VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31:1345–1355.[PubMed][Google Scholar]
  • 45. Grimm S, Bajbouj MEfficacy of vagus nerve stimulation in the treatment of depression. Expert Rev Neurother. 2010;10:87–92.[PubMed][Google Scholar]
  • 46. van der Kleij H, O'Mahony C, Shanahan F, O'Mahony L, Bienenstock JProtective effects of Lactobacillus reuteri and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1131–R1137.[PubMed][Google Scholar]
  • 47. Crabbe JC, Wahlsten D, Dudek BCGenetics of mouse behavior: interactions with laboratory environment. Science. 1999;284:1670–1672.[PubMed][Google Scholar]
  • 48. Bravo JA, Dinan TG, Cryan JFAlterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. Int J Neuropsychopharmacol. 2011;14:666–683.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.