Increased expression of inflammatory genes in the neonatal mouse brain after hyperoxic reoxygenation.
Journal: 2015/September - Pediatric Research
ISSN: 1530-0447
Abstract:
BACKGROUND
Hyperoxic reoxygenation following hypoxia increases the expression of inflammatory genes in the neonatal mouse brain. We have therefore compared the temporal profile of 44 a priori selected genes after hypoxia and hyperoxic or normoxic reoxygenation.
METHODS
Postnatal day 7 mice were subjected to 2 h of hypoxia (8% O2) and 30 min reoxygenation with 60% or 21% O2. After 0 to 72 h observation, mRNA and protein were examined in the hippocampus and striatum.
RESULTS
There were significantly higher gene expression changes in six genes after hyperoxic compared to normoxic reoxygenation. Three genes had a generally higher expression throughout the observation period: the inflammatory genes Hmox1 (mean difference: 0.52, 95% confidence interval (CI): 0.15-1.01) and Tgfb1 (mean difference: 0.099, CI: 0.003-0.194), and the transcription factor Nfkb1 (mean difference: 0.049, CI: 0.011-0.087). The inflammatory genes Cxcl10 and Il1b, and the DNA repair gene Neil3, had a higher gene expression change after hyperoxic reoxygenation at one time point only. Nineteen genes involved in inflammation, transcription regulation, apoptosis, angiogenesis, and glucose transport had significantly different gene expression changes with time in all intervention animals.
CONCLUSIONS
We confirm that hyperoxic reoxygenation induces a stronger inflammatory gene response than reoxygenation with air.
Relations:
Citations
(2)
Conditions
(3)
Chemicals
(5)
Genes
(3)
Organisms
(3)
Processes
(2)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.